CS 70 Discrete Mathematics and Probability Theory Spring 2024 Seshia, Sinclair HW 13

Due: Saturday, 4/20, 4:00 PM Grace period until Saturday, 4/20, 6:00 PM

Sundry

Before you start writing your final homework submission, state briefly how you worked on it. Who else did you work with? List names and email addresses. (In case of homework party, you can just describe the group.)

1 Uniform Uniform Computation

- Note 21 Suppose $X \sim \text{Uniform}[0,1]$ and $Y \sim \text{Uniform}[0,X]$. That is, conditioned on X = x, Y has a Uniform[0,x] distribution.
 - (a) What is $\mathbb{P}[Y > 1/2]$?
 - (b) Calculate Cov(X, Y).

2 Moments of the Gaussian

- Note 21 For a random variable *X*, the quantity $\mathbb{E}[X^k]$ for $k \in \mathbb{N}$ is called the *kth moment* of the distribution. In this problem, we will calculate the moments of a standard normal distribution.
 - (a) Prove the identity

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{tx^2}{2}\right) \mathrm{d}x = t^{-1/2}$$

for t > 0.

Hint: Consider a normal distribution with variance $\frac{1}{t}$ and mean 0.

(b) For the rest of the problem, X is a standard normal distribution (with mean 0 and variance 1). Use part (a) to compute $\mathbb{E}[X^{2k}]$ for $k \in \mathbb{N}$.

Hint: Try differentiating both sides with respect to t, k times. You may use the fact that we can differentiate under the integral without proof.

(c) Compute $\mathbb{E}[X^{2k+1}]$ for $k \in \mathbb{N}$.

3 Exponential Median

Note 21 (a) Prove that if $X_1, X_2, ..., X_n$ are mutually independent exponential random variables with parameters $\lambda_1, \lambda_2, ..., \lambda_n$, then $\min(X_1, X_2, ..., X_n)$ is exponentially distributed with parameter $\sum_{i=1}^n \lambda_i$. *Hint*: Recall that the CDF of an exponential random variable with parameter λ is $1 - e^{-\lambda t}$.

(b) Given that the minimum of three i.i.d exponential variables with parameter λ is *m*, what is the probability that the difference between the median and the smallest is at least *s*? Note that the exponential random variables are mutually independent.

(c) What is the expected value of the median of three i.i.d. exponential variables with parameter λ ?

Hint: Part (b) may be useful for this calculation.

4 Chebyshev's Inequality vs. Central Limit Theorem

Note 17 Let *n* be a positive integer. Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with the following distribution:

$$\mathbb{P}[X_i = -1] = \frac{1}{12};$$
 $\mathbb{P}[X_i = 1] = \frac{9}{12};$ $\mathbb{P}[X_i = 2] = \frac{2}{12}.$

(a) Calculate the expectations and variances of X_1 , $\sum_{i=1}^n X_i$, $\sum_{i=1}^n (X_i - \mathbb{E}[X_i])$, and

$$Z_n = \frac{\sum_{i=1}^n (X_i - \mathbb{E}[X_i])}{\sqrt{n/2}}$$

- (b) Use Chebyshev's Inequality to find an upper bound *b* for $\mathbb{P}[|Z_n| \ge 2]$.
- (c) Use *b* from the previous part to bound $\mathbb{P}[Z_n \ge 2]$ and $\mathbb{P}[Z_n \le -2]$.
- (d) As $n \to \infty$, what is the distribution of Z_n ?
- (e) We know that if $Z \sim \mathcal{N}(0,1)$, then $\mathbb{P}[|Z| \leq 2] = \Phi(2) \Phi(-2) \approx 0.9545$. As $n \to \infty$, provide approximations for $\mathbb{P}[Z_n \geq 2]$ and $\mathbb{P}[Z_n \leq -2]$.
- 5 Analyze a Markov Chain
- Note 22 Consider a Markov chain with the state diagram shown below where $a, b \in (0, 1)$.

Here, we let X(n) denote the state at time n.

- (a) Show that this Markov chain is aperiodic.
- (b) Calculate $\mathbb{P}[X(1) = 1, X(2) = 0, X(3) = 0, X(4) = 1 | X(0) = 0].$
- (c) Calculate the invariant distribution.