
70: Discrete Math and Probability Theory

Programming + Data Structures/Algorithms + Microprocessors
≡ Superpower! (almost)

What are our super powerful programs/processors doing?
Logic and Proofs!
Induction ≡ Recursion.

What can computers do?
Work with discrete objects.
Discrete Math =⇒ immense application.

Computers learn and interact with the world?
E.g. AI/machine learning, cyber-physical systems/robotics,

networking/wireless communications, ...
Probability!



Instructors

Instructor: Sanjit Seshia.

Professor of EECS (office: 566 Cory)

19th year on the faculty at Berkeley!

Ph.D.: in Computer Science, from Carnegie Mellon University.

Research: Formal Methods (a.k.a. Computational Proof
Methods)

applied to cyber-physical systems/robotics (e.g. “is this
self-driving car safe”), computer security (e.g., “can this
program leak my private data?”), ...

Taught: CS 70, EECS 149/249A, CS 172, EECS 144/244,
EECS 219C, EECS149.1x on edX, ...



Instructors
Instructors

• Research: CS Theory, esp. algorithms, randomness, 
statistical physics, stochastic processes…


• Teaching: CS70, CS170, CS172, CS174 + various grad 
classes

• Alistair Sinclair


• Professor of CS (office 677 Soda)

•@ Berkeley since pre-history (1994)


•Originally from the UK: undergrad @ Cambridge, PhD @ 
Edinburgh



Admin

Course Webpage: http://eecs70.org/

Explains policies, has office hours, schedule, homework,
exam dates, etc.

One midterm, final.
midterm on March 6
final on May 10

Questions/Announcements =⇒ Ed Discussion

Grading – see course webpage
homework/no-homework option continues



Learning and Teaching

Variety of Background Knowledge on the Topics of CS70
“mini-vitamins” before lecture can help

Variety of Learning Styles
take “notes” during lecture?

Variety of Teaching Styles
slides vs. no slides

Learn by Doing (Mathematical Modeling/Problem Solving)



CS70: Lecture 1. Outline.

Today: Note 1. (Note 0 is background. Do read/skim it.)

The language of proofs! Mathematical Logic!

1. Propositions.
2. Propositional Forms.
3. Implication.
4. Truth Tables
5. Quantifiers
6. More De Morgan’s Laws



Propositions: Statements that are true or false.

√
2 is irrational Proposition True

2+2 = 4 Proposition True
2+2 = 3 Proposition False
826th digit of pi is 4 Proposition False
Stephen Curry is a good basketball player Not a Proposition
All evens > 2 are unique sums of 2 primes Proposition False
4+5 Not a Proposition.
x +x Not a Proposition.

Again: “value” of a proposition is ... True or False



Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): P ∧Q

“P ∧Q” is True when both P and Q are True . Else False .

Disjunction (“or”): P ∨Q

“P∨Q” is True when at least one P or Q is True . Else False .

Negation (“not”): ¬P

“¬P” is True when P is False . Else False .

Examples:

¬ “(2+2 = 4)” – a proposition that is ... False

“2+2 = 3” ∧ “2+2 = 4” – a proposition that is ... False

“2+2 = 3” ∨ “2+2 = 4” – a proposition that is ... True



Propositional Forms: quick check!

P = “
√

2 is rational”
Q = “826th digit of pi is 2”

P is ...False .
Q is ...True .

P ∧Q ... False

P ∨Q ... True

¬P ... True



Put them together..

Propositions:
P1 - Person 1 rides the bus.
P2 - Person 2 rides the bus.
....

Suppose we can’t have either of the following happen; That
either person 1 or person 2 ride the bus and person 3 or 4 ride
the bus. Or that person 2 or person 3 ride the bus and that
either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
¬(((P1 ∨P2)∧ (P3 ∨P4))∨ ((P2 ∨P3)∧ (P4 ∨¬P5)))

Who can ride the bus?
What combinations of people can ride the bus?

This seems ...complicated.

We need a way to keep track!



Truth Tables for Propositional Forms.
P Q P ∧Q
T T T
T F F
F T F
F F F

P Q P ∨Q
T T T
T F T
F T T
F F F

One use for truth tables: Logical Equivalence of propositional forms!

Example: ¬(P ∧Q) logically equivalent to ¬P ∨¬Q

...because the two propositional forms have the same...

....Truth Table!

P Q ¬(P ∧Q) ¬P ∨¬Q
T T F F
T F T T
F T T T
F F T T

DeMorgan’s Law’s for Negation: distribute and flip!

¬(P ∧Q) ≡ ¬P ∨¬Q ¬(P ∨Q) ≡ ¬P ∧¬Q



Implication.

P =⇒ Q interpreted as

If P, then Q.

True Statements: P, P =⇒ Q.
Conclude: Q is true.

Example: Statement: If you stand in the rain, then you’ll get
wet.

P = “you stand in the rain”
Q = “you will get wet”

Statement: “Stand in the rain”
Can conclude: “you’ll get wet.”



Non-Consequences/consequences of Implication

The statement “P =⇒ Q”

only is False if P is True and Q is False .

False implies nothing
P False means Q can be True or False
Anything implies true.
P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?

Not necessarily.

P =⇒ Q and Q are True does not mean P is True

Instead we have:
P =⇒ Q and P are True does mean Q is True .

Be careful out there!

Some Fun: use propositional formulas to describe implication?
((P =⇒ Q)∧P) =⇒ Q.



Implication and English.

P =⇒ Q
▶ If P, then Q.
▶ Q if P.
▶ P only if Q.
▶ P is sufficient for Q.
▶ Q is necessary for P.



Truth Table: implication.

P Q P =⇒ Q
T T T
T F F
F T T
F F T

P Q ¬P ∨Q
T T T
T F F
F T T
F F T

¬P ∨Q ≡ P =⇒ Q.

These two propositional forms are logically equivalent!



Contrapositive, Converse
▶ Contrapositive of P =⇒ Q is ¬Q =⇒ ¬P.

▶ If the plant pollutes, fish die.
▶ If the fish don’t die, the plant does not pollute.

(contrapositive)
▶ If you stand in the rain, you get wet.
▶ If you did not stand in the rain, you did not get wet.

(not contrapositive!) converse!
▶ If you did not get wet, you did not stand in the rain.

(contrapositive.)

Logically equivalent! Notation: ≡.
P =⇒ Q ≡ ¬P ∨Q ≡ ¬(¬Q)∨¬P ≡ ¬Q =⇒ ¬P.

▶ Converse of P =⇒ Q is Q =⇒ P.
If fish die the plant pollutes.
Not logically equivalent!

▶ Definition: If P =⇒ Q and Q =⇒ P is P if and only if Q
or P ⇐⇒ Q.
(Logically Equivalent: ⇐⇒ . )



Variables.

Propositions?
▶ ∑

n
i=1 i = n(n+1)

2 .

▶ x > 2
▶ n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = “x is even”

Same as boolean valued functions from 61A!
▶ P(n) = “∑n

i=1 i = n(n+1)
2 .”

▶ R(x) = “x > 2”
▶ G(n) = “n is even and the sum of two primes”

Next: Statements about boolean valued functions!!



Quantifiers..

There exists quantifier:

(∃x ∈ S)(P(x)) means ”P(x) is true for some x in S”

Wait! What is S?

S is the universe: “the type of x”.

Universe examples include..
▶ N = {0,1,2, . . .} (natural numbers).
▶ Z = {. . . ,−1,0,1, . . .} (integers)
▶ Z+ (positive integers)
▶ See note 0 for more!



Quantifiers..

There exists quantifier:
(∃x ∈ S)(P(x)) means ”P(x) is true for some x in S”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 ≥ 0)



Quantifiers are not commutative.

▶ Consider this English statement: ”there is a natural number
that is the square of every natural number”, i.e the square
of every natural number is the same number!

(∃y ∈ N) (∀x ∈ N) (y = x2) False

▶ Consider this one: ”the square of every natural number is a
natural number”...

(∀x ∈ N)(∃y ∈ N) (y = x2) True



Quantifiers....negation...DeMorgan again.

Consider
¬(∀x ∈ S)(P(x)),

By DeMorgan’s law,

¬(∀x ∈ S)(P(x)) ⇐⇒ (∃x ∈ S)(¬P(x)).

English: there is an x in S where P(x) does not hold.
What we do in this course! We consider claims.

Claim: (∀x) P(x) “For all inputs x the program works.”
For False , find x , where ¬P(x).

Counterexample.
Bad input.
Case that illustrates bug.

For True : prove claim. Next lectures...



Negation of exists.

Consider

¬(∃x ∈ S)(P(x))

Equivalent to:

¬(∃x ∈ S)(P(x)) ⇐⇒ ∀(x ∈ S)¬P(x).

English: means that for all x in S , P(x) does not hold.



Which Theorem?

Theorem: ∀n ∈ N
(
n ≥ 3 =⇒ ¬(∃a,b,c ∈ N an +bn = cn)

)
Which Theorem?

Fermat’s Last Theorem!

Remember Right-Angled Triangles: for n = 2, we have (3,4,5)
and (5,12,13), and ... (Pythagorean triples)

1637: Fermat: Proof doesn’t fit in the margins.

1993: Wiles ...(based in part on Ribet’s Theorem)

DeMorgan Restatement:
Theorem: ¬

(
∃n ∈ N ∃a,b,c ∈ N (n ≥ 3∧an +bn = cn)

)



Summary.
Propositions are statements that are true or false.

Propositional forms use ∧,∨,¬.

The meaning of a propositional form is given by its truth table.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q ⇐⇒ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P
Converse: Q =⇒ P

Predicates: Statements with “free” variables.

Quantifiers: ∀x P(x), ∃y Q(y)

Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”
¬(P ∨Q) ⇐⇒ (¬P ∧¬Q)
¬∀x P(x) ⇐⇒ ∃x ¬P(x).

Next Time: proofs!


