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What are our super powerful programs/processors doing?
Logic and Proofs!
Induction = Recursion.

What can computers do?
Work with discrete objects.
Discrete Math — immense application.

Computers learn and interact with the world?

E.g. Al/machine learning, cyber-physical systems/robotics,
networking/wireless communications, ...
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19th year on the faculty at Berkeley!

Ph.D.: in Computer Science, from Carnegie Mellon University.

Research: Formal Methods (a.k.a. Computational Proof
Methods)

applied to cyber-physical systems/robotics (e.g. “is this
self-driving car safe”), computer security (e.g., “can this
program leak my private data?”), ...

Taught: CS 70, EECS 149/249A, CS 172, EECS 144/244,
EECS 219C, EECS149.1x on edX; ...



Instructors

e Alistair Sinclair
* Professor of CS (office 677 Soda)

@ Berkeley since pre-history (1994)

Originally from the UK: undergrad @ Cambridge, PhD @
Edinburgh

Research: CS Theory, esp. algorithms, randomness,
statistical physics, stochastic processes...

Teaching: CS70, CS170, CS172, CS174 + various grad
classes
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Course Webpage: http://eecs70.org/

Explains policies, has office hours, schedule, homework,
exam dates, etc.

One midterm, final.
midterm on March 6
final on May 10

Questions/Announcements = Ed Discussion

Grading — see course webpage
homework/no-homework option continues
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Learning and Teaching

Variety of Background Knowledge on the Topics of CS70
“mini-vitamins” before lecture can help

Variety of Learning Styles
take “notes” during lecture?

Variety of Teaching Styles
slides vs. no slides

Learn by Doing (Mathematical Modeling/Problem Solving)
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o o kDD~

Propositions.
Propositional Forms.
Implication.

Truth Tables

Quantifiers

More De Morgan’s Laws
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Put them together..

Propositions:
P - Person 1 rides the bus.
P> - Person 2 rides the bus.

Suppose we can’t have either of the following happen; That
either person 1 or person 2 ride the bus and person 3 or 4 ride
the bus. Or that person 2 or person 3 ride the bus and that
either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
~(((P1V P2)A(P3V Pa))V ((P2V P3) A (PsV—=Ps)))

Who can ride the bus?
What combinations of people can ride the bus?

This seems ...complicated.

We need a way to keep track!
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Implication.

P = Q interpreted as
If P, then Q.

True Statements: P, P — Q.
Conclude: Qs true.

Example: Statement: If you stand in the rain, then you'll get
wet.
P = “you stand in the rain”
Q = “you will get wet”
Statement: “Stand in the rain”
Can conclude: “you’ll get wet.”
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Non-Consequences/consequences of Implication

The statement ‘P — Q”
only is False if P is True and Q is False .

False implies nothing

P False means Q can be True or False
Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?

Not necessarily.
P — Q and Q are True does not mean P is True

Instead we have:
P — Qand P are True does mean Q is True .

Be careful out there!

Some Fun: use propositional formulas to describe implication?
(P= Q)nrP)= Q.
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Implication and English.

P= Q
> If P, then Q.

> Qif P.

» Ponlyif Q.

» P is sufficient for Q.
» Qis necessary for P.
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Truth Table: implication.

PIQ[P— Q PIQ[-PVQ
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-PvQ =P = Q.

These two propositional forms are logically equivalent!
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Contrapositive, Converse

» Contrapositive of P — Qis -Q — —P.

> |f the plant pollutes, fish die.
> [f the fish don’t die, the plant does not pollute.
(contrapositive)

» [f you stand in the rain, you get wet.
» [f you did not stand in the rain, you did not get wet.
(not contrapositive!) converse!
> If you did not get wet, you did not stand in the rain.
(contrapositive.)
Logically equivalent! Notation: =.
P— Q=-PvQ=-(-Q)V-P=-Q = —P.
» Converse of P — Qis Q — P.
If fish die the plant pollutes.
Not logically equivalent!

» Definition: If P — Qand Q = Pis Pifand only if Q

orP = Q.
(Logically Equivalent: <—.)
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Variables.

Propositions?
SYETEL
> x>2
> nis even and the sum of two primes
No. They have a free variable.
We call them predicates, e.g., Q(x) = “x is even”
Same as boolean valued functions from 61A!
> P(n)=“Yf, i="200
» R(x)="x>2"
» G(n) = “nis even and the sum of two primes”
Next: Statements about boolean valued functions!!
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There exists quantifier:
(3x € S)(P(x)) means "P(x) is true for some x in S”
Wait! What is S?
S is the universe: “the type of x”.
Universe examples include..
» N={0,1,2,...} (natural numbers).
» Z={...,—1,0,1,...} (integers)
» ZT (positive integers)
» See note 0 for more!
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There exists quantifier:
(3x € S)(P(x)) means "P(x) is true for some x in S”
For example:
(3x € N)(x = x?)
Equivalentto “(0=0)v(1=1)v(2=4)V...”
Much shorter to use a quantifier!

For all quantifier;
(Vx € S) (P(x)). means “For all x in S P(x) is True .”

Examples:
“Adding 1 makes a bigger number.”
(VxeN) (x+1>x)
"the square of a number is always non-negative”
(¥x € N)(x2 > 0)
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Quantifiers are not commutative.

» Consider this English statement: "there is a natural number
that is the square of every natural number”, i.e the square
of every natural number is the same number!

(3y e N) (vx e N) (y =x?) False

» Consider this one: "the square of every natural number is a
natural number”...

(Vx e N)(3y e N) (y = x?) True
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Quantifiers....negation...DeMorgan again.

Consider
=(Vx € S)(P(x)),

By DeMorgan’s law,
—(vx € S)(P(x)) < (3x € S)(—P(x)).

English: there is an x in S where P(x) does not hold.
What we do in this course! We consider claims.

Claim: (Vx) P(x) “For all inputs x the program works.”
For False , find x, where —P(x).
Counterexample.
Bad input.
Case that illustrates bug.
For True : prove claim. Next lectures...
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Consider
—(Ix € S)(P(x))
Equivalent to:

=(3x € S)(P(x)) < V(x € S)=P(x).



Negation of exists.

Consider
~(3x € S)(P(x))
Equivalent to:
~(3x € S)(P(x)) += ¥(x € S)~P(x).

English: means that for all x in S, P(x) does not hold.
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Theorem: Vne N (n>3 = —(3a,b,ce Na"+b" =c"))
Which Theorem?
Fermat’s Last Theorem!

Remember Right-Angled Triangles: for n= 2, we have (3,4,5)
and (5,12,13), and ... (Pythagorean triples)

1637: Fermat: Proof doesn't fit in the margins.
1993: Wiles ...(based in part on Ribet’s Theorem)

DeMorgan Restatement:
Theorem: =(3ne N3a,b,ce N(n>3Aa"+b"=c"))
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Summary.

Propositions are statements that are true or false.
Propositional forms use A,V,—.

The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.
Implication: P = Q < -PVAQ.

Contrapositive: ~-Q — —P
Converse: Q =— P

Predicates: Statements with “free” variables.
Quantifiers: Vx P(x), 3y Q(y)
Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”
-(PvQ) < (-PA-Q)
-Vx P(x) < 3x =P(x).

Next Time: proofs!



