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Secret Sharing.

Share secret among n people.

Secrecy: Any k — 1 knows nothing.
Robustness: Any k knows secret.

Geometric Intuition for today:

Two points make a line.
Lots of lines go through one point.
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Polynomials

A polynomial

P(x) = agx“ +a4_1x° 1.

-+ ap.
is specified by coefficients ay, ... ap.
P(x) contains point (a,b) if b= P(a).

Polynomials over reals: a;,...,ay € R, use x € R.



Field (in Mathematics)

Set with two commutative operations: addition and multiplication with
additive/multiplicative identities and inverses
(except for additive identity has no multiplicative inverse).



Field (in Mathematics)

Set with two commutative operations: addition and multiplication with
additive/multiplicative identities and inverses
(except for additive identity has no multiplicative inverse).

E.g., Reals, rationals, complex numbers.



Field (in Mathematics)

Set with two commutative operations: addition and multiplication with
additive/multiplicative identities and inverses
(except for additive identity has no multiplicative inverse).

E.g., Reals, rationals, complex numbers.
Not E.g., the integers.



Field (in Mathematics)

Set with two commutative operations: addition and multiplication with
additive/multiplicative identities and inverses
(except for additive identity has no multiplicative inverse).

E.g., Reals, rationals, complex numbers.
Not E.g., the integers.



Field (in Mathematics)

Set with two commutative operations: addition and multiplication with
additive/multiplicative identities and inverses
(except for additive identity has no multiplicative inverse).

E.g., Reals, rationals, complex numbers.
Not E.g., the integers.

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.
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Finite Fields

Arithmetic modulo a prime integer p has multiplicative inverses...
...and has only a finite number of elements.

Arithmetic modulo a prime p is a finite field denoted by GF(p).
GF(p)=({0,...,p—1},+ (mod p),* (mod p))
Polynomials P(x) with arithmetic modulo p:

d—

P(x) = agx®+ag_1x?'---+ay (mod p),

forxe{0,....p—1}and g, €{0,...,p—1}
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Polynomial: P(x) = agx9+ -+ ap over R

Line:P(x)=ajx+ayp=mx+b

P(x)

P(x)=0.5x% —x+0.1

V4
A

P(x) = —.3x% +1x+.1

Parabola: P(x) = apx®+aix+ay = ax®>+bx+c¢
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Polynomial: P(x) = agx?+---+ag (mod p)
P(x)

Finding an intersection.

X+2=3x+1 (mod 5)

= 2x=1 (mod 5) = x=3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!
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Two points make a line.

Fact: Given d +1 points’, exactly 1 degree < d polynomial contains
them.

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree < d polynomial with
arithmetic modulo prime p contains d + 1 pts.

TPoints with different x values.
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3 points determine a parabola.

P(x) = 0.5x% — x +1

8 P(x)=-3x2+1x+.5

Fact: Exactly 1 degree < d polynomial contains d + 1 points. 2

2Points with different x values.
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2 points not enough.

P(x)=.2x? - 5x+1.5

I

v

P(x)=—3x>+1x+.5

P(x) = —.6x%+1.9x — .1

There is a P(x) contains blue points and any (0, y)!
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Poll:example.

The polynomial from the scheme: P(x) = 2x?+1x+3 (mod 5).
What is true for the secret sharing scheme using P(x)?

(A) The secret is “2”.
) The secret is “3”.
C) A share could be (1,5) because P(1) =5
D) A share could be (2,4)
E) A share could be (0,3)
);

( ) are true. (E) undesirable (reveals secret), start shares from

(B
(
(
(
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From d + 1 points to degree d polynomial?

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

m+b=3 (mod 5)
P(2)=m(2)+b = 2m+b=4 (mod5)
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Subtract first from second..

m+b = 3 (mod5)
m 1 (mod 5)

Backsolve: b=2 (mod 5). Secret is 2.

And the line is...
X+2 modb.
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For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=ax+ai +ao 2 (mod 5)
P(2)=4ax+2a1+a = 4 (mod5)
P(3) =4a>+3a1+a = 0 (mod 5)

a+aj+a = 2 (modb5)
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Subtracting 2nd from 3rd yields: a; = 1.
a=(2-4(a))27"'=(-2)(27")=(3)(3) =9=4 (mod 5)
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So polynomial is 2x2 +1x+4 (mod 5)
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a1 xf ' +--+a = y» (modp)
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1, ifx=x.

)

Aj(x) =10, ifx=x;forj#i.
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Will y4 A¢(x) contain (x1,y1)?
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P(x) = y1A1(x) + y2D2(X) ...+ Yar1Dg:1(X).
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Modular Arithmetic Fact: Exactly 1 degree < d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (X2,¥2) -+ (Xd11: Ya11)-

[Ti(x = X) 1
i Hj;éi(xi_xj) /I;I,( /)/I;I( ! /)
Numerator is 0 at x; # x;.
“Denominator” makes it 1 at x;.
And..

P(X) = y181(X) + Y2 L2(X) 4+ + Yar1 Dg11(X).
hits points (x1,¥1); (X2,¥2) - (Xg+1,Yd+1)- Degree d polynomial!
Construction proves the existence of a polynomial!
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Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d + 1 points.

Roots fact: Any nontrivial degree d polynomial has at most d roots.
Non-zero line (degree 1 polynomial) can intersect y = 0 at only one x.
A parabola (degree 2), can intersect y = 0 at only two x’s.

Proof:
Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) — P(x) has d+ 1 roots and is degree d.
Contradiction.

Must prove Roots fact.
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Polynomial Division.

Divide 4x2 — 3x 42 by (x —3) modulo 5.

4x"2 - 2x
idx + 2
dx - 2

4x2 -3x+2=(x—3)(4x+4)+4 (mod 5)
In general, divide P(x) by (x — a) gives Q(x) and remainder r.
Thatis, P(x) = (x—a)Q(x)+r
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Only d roots.

Lemma 1: P(x) has root aiff P(x)/(x — a) has remainder 0:
P(x) = (x—a)Q(x).

Proof: P(x) = (x—a)Q(x)+r.

Plugin a: P(a) =r.

Itis a root if and only if r = 0.

Lemma 2: P(x) has d roots; ry,...,ry then
P(x) = c(x —r)(x—rz)--- (X = Ig).
Proof Sketch: By induction.

Induction Step: P(x) = (x — ry)Q(x) by Lemma 1.

Q(x) has smaller degree so use the induction hypothesis. It has d — 1
roots. Hence Q(x) =c/(x —r2)---(x —ry)

Result follows. O

d+ 1 roots implies degree is at least d+1.
Roots fact: Any degree d polynomial has at most d roots.
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3. Share i is point (i, P(i) mod p).



Secret Sharing: Summary

Modular Arithmetic Fact: Exactly one polynomial degree < d over
GF(p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secretse {0,...,p—1}

1. Choose ag = s, and randomly ay,...,ak_1.
2. Let P(x) = ay_1xK 1+ a_oxkK2 ... a5 with gy = s.
3. Share i is point (i, P(i) mod p).

Robustness: Any k knows secret.

Knowing k pts, only one P(x), evaluate P(0).

Secrecy: Any k — 1 knows nothing.
Knowing < k —1 pts, any P(0) is possible.
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Minimality.

Need p > nto hand out n shares: P(1)...P(n).

For b-bit secret, must choose a prime p > 2°.

Theorem: There is always a prime between nand 2n.
Working over numbers within 1 bit of secret size. Minimality.
With k shares, reconstruct polynomial, P(x).

With k — 1 shares, any of p values possible for P(0)!



Runtime.



Runtime.

Runtime: polynomial in k, n, and logp.

1. Evaluate degree k — 1 polynomial n times using log p-bit
numbers.

2. Reconstruct secret by solving system of k equations using
log p-bit arithmetic.
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What is the number of degree d polynomials over GF(m)?



A bit more counting.

What is the number of degree d polynomials over GF(m)?

» mat!: d+1 coefficients from {0,...,m—1}.
coefficient representation



A bit more counting.

What is the number of degree d polynomials over GF(m)?

» mat!: d+1 coefficients from {0,...,m—1}.
coefficient representation

» mat!: d+1 points with y-values from {0,...,m—1}
value representation



A bit more counting.

What is the number of degree d polynomials over GF(m)?

» mat!: d+1 coefficients from {0,...,m—1}.
coefficient representation

» mat!: d+1 points with y-values from {0,...,m—1}
value representation

Infinite number for reals, rationals, complex numbers!
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Summary

Two points make a line.

Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.

Today: d+ 1 points make a unique degree d polynomial.
Can solve linear system.
Solution exists: lagrange interpolation.
Unique:
Roots fact: Factoring: (x —r) is root.
Induction only d roots.
Apply: P(x), Q(x) degree d.
P(x) — Q(x) is degree d = d roots.
P(x) = Q(x) on d+1 points = P(x) = Q(x).

Secret Sharing:
k points on degree k — 1 polynomial is great!
Can hand out n points on polynomial as shares.



