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Summary of Last Lecture

•• Random variable = function ✗ : R→R

Examples : •

D= sea . A coin tosses •> >

✗(w) = #Heads in W R

D= twodice rolls

✗(w) = sum of numbers on the dice

• Distribution of a v.v. ✗ :

Pr [✗=a] for each possible value a of ✗

Canthink ofthis as a histogram :

Pr[X= a]

£PrH=a] = 1
a. • kqH.gg ,



Summary (continued)

•• Expectation f-mean)

E-[X] = £ a ✗ Pr [✗=a]

Measures the
"center of mass

"

of the distribution

• Linearity of expectation :
For a¥y v.v. 's

X
,
Y and constants a. b

Efax+ by] = aEfx] + BEG]

• Use with indicator v.v . 's to do counting
E. g. ✗

= no . of fixed points in a random permutation
✗= §

,

Xi inhere ✗ i = { 1 if i a fixed point
0 otherwise



Summary continued)
• Binomial Distribution Bin In, p)

✗= # Heads in n tosses of a biased coin G-leads pub .

P)

Pr lX=k] = (1) pk (tp)
""

K -0,1 . . . . , n

• Hypergeometric Distribution HyperGeom(N,n ,B)

✗= # black balls in a sample of size n drawn from
a box containing N balls, B of which are black

Pr ( *⇐ K] = l¥y÷¥)



Today
• joint distributions independence of
random variables

• Two more important distributions :

- Geometric distribution

- Poisson distribution



Joint Distributions
Defy : The joint distribution of two r- v.'s X , Y on the

same prob. space is the set

{ (a , b, PrlX=a , Y = b] : att
,
be B }

where A, B are the possiblevalues of X, Y resp .
The marginal distribution of ✗ is given by

Pr [✗=a) = E Pr[X=a , Y= b]
b c-B

✗it are independent if

P✓lX=a , Y =-D] = Pr /✗=a) ✗ Pr[Y=b] ta
,
b



Joint Distributions
Example : Throw twofair dice
Random variables :

✗= score on first die
y = - . - - second - . - -

2 = Sum of scores

Pr / ✗=3, Y= 5 ] = 436

Pr I ✗=3
,
2=9 ] = 436

X
,
Y independent ?

X
,Z independent ?



Geometric distribution
Toss a biased coin (Heads pob . p ) until
you see the first Head

Random variable ✗ : = number of tosses

what is the distribution of ✗ ?

NIE : ✗ takes values in { 1,2 , 3, - - - }

Pr [✗= 1) = p We say ✗ has the
Pr [11--2] = X-p) p Geometric distnbn .

Prl ✗=3] =:(1-PYP with parameter p

Pr [X=k? = 4-p)
" "

p ✗~Geom (p)



Pr /X=k] = (tp)
""

p k=l
> 2,3, - - -

Check that §?Pr[x=k]=7 V.

E?Pr[X=k]= [ 4-+1
"

'p
k =L

=p .EE/1-pYfsumof.geometic]= P×¥py series

= 1 ✓



What does the Geometric distribution look like ?

Note : Always

decreases geometrically
(for any p)



Expectation of Geom(p)
compute E IX] two ways :

4) Calculus

Elx] = €7k ✗ Pr [✗ = k]

= §
,

Kx p fl- p)
""

=P,ÉkA-p = - F. €54 -pl
"

)
=
- ¥1 ÷)

=p ✗¥ = ¥
= I

P



Expectation of Geomfp)
compute EIX] two ways :

Gil Tail Sum Formula

Fact : For any r-V. that takes values in {0>1,2 , - - . }
we have

EIX] = ET PRIX> i]
Proof : Write pi = P✓[✗ = i] i --0,1>2, . . -

Them EIX) = (0×12)+(1×13)+ (2×13)+(3×13) -1 - - -

= P
,
+ (131-13) + (13+13+13) + . - -

= 47-112+13+12,1=-7+113+13+12,-1--1+(13+12,1)
1- - - -

= PRIX> I ] + PRIX> 2) + Pv [✗23]
1- - - .



Fact : For any r-v . that takes values in {0, 1,2 , - - . }
we have

E-1×1 = ET PRIX> i]

Apply to ✗~ Geom(p)
Note that Prfx> i] = Pr /first i-11 losses are Tails]

= X-p)
i- i

Hence Efx] = X-p)" ' = ET 4-pi = ¥

Boltomine : Expected no . of trials (tosses) until
we see first Head is Yp

( =2 forfaircoin)



Geometric distribution is Memory less

Claim : Time until next Head is independent
of how long we've been waiting - i. e.

PRIX> mtk I ✗ > m] = Pr [✗ > K]

Pioof : Hk ,
PRIX> K ) = X-p)

"

Therefore :

PRIX >mtk / ✗ >m] =
PRIX>mtk]
TET

=

= 4-p)
"

= Prcx> k]
✓



Coupon collecting revisited

Recat : - n different coupons
- sequence of uniform random samples
- ✗ = #samples until we get at least one of

each

write ✗ = X
,
+ Xzt - - - + Xn

where Xi = no . of samples until we get the ithnew
coupon , starting after we got the G- 1)th

claim : Xi ~ Geom (
" )

~ Inn + 8Hence E- [✗it = n?i+

Linearity : E [×] =€,

n-÷, = n×f+E+§+----)
~ nlnn



Poisson Distribution

Suppose some event (e-g. , a radioactive emission , a
disconnected phonecall etc . ) occurs randomly at a certain
average density ✗ per unit time , and occurrences
are independent . Then the no . of occurrences in a
unit of time is modeled by a Poisson r. v.

Pr [✗= k] = e-> ¥7 K --0
. 1,2, - - -

Chad : £ Prl✗=k7 = É e-
✗¥!

K = O k -0

= e-aÉo¥)=é
= 1



✗~ Poisft) PrlX=k] = e-> J÷
E.
g. , #goals in a World Cup soccer match

✗ = 2.5

Pr /0 goals] = e-2-5%5-4 = e-2-5=0.082

Pr [ 1 goal] = e-
25

2- = 0.205

Pr 12 goals] = e-
2-5

12.25¥ = 0.257

Pr 13 goals] = e-
2-5

k-z5 = 0.214

Prf > 3 goals] ⇐ 0.242



Histograms of Pois (7)

NOLI : The distribution is unimodal , peaks at 171



Expectation of Pois (1)

Pr /✗= k] = e-
' 2¥

Efx] = £ kx Pr /✗= k]
K =0

= §
,

kx e-
×

K !

= ✗e-'É,¥: = E.☐ ¥.

-

- e
'

= ✗e-× ex

= 7



Sum of Independent Poisson R.tl. 's

Thin : Suppose ✗~ Po is (7) and Y- Pois (A) are
independent Them ✗+ y ~ Poise-1M

Proof : Pr[x+y=k] = ÉPfX=j , f- K- j ]
j=o

= ;=&PrlX=j]PrlY=k-j ] lined.)

= £ e-
'¥;×é^¥!j = 0

= e-
'"̂ ! ¥

.

ftp.YE.jp. Hi
= e-
HD

. ¥
.

Htm)
" (binomial✓ theorem)



Poisson us. Binomial

Examtde : Balls bins within balls , n bins

R.v. ✗= #balls in bin 1

Them ✗~ Bin ( ) so Efx]=

So : PrfX=k] = (E) (a)
"

(th )
""

k= 0.1.2, - - -

Now fix K and let n-> as

PrlX=k ] = (1) ¥1 ,-⇒
n-k #F) =¥%n-k+nnk

→ ¥, as n→n

4-IT
-"

~ e-
1-E->e- I⇒ ¥, e-

1

as n→oo

So as n→•, ✗~ Pois (1)
E. g. Pr [✗=D → e-

' 171*-17→ e-
1



More generally , for any constant 2 .

Pr/Bin In , E) = K]Bin In . ⇒→ Pois A) I;÷÷EIiYn→a

connection with "rare events
"

n pieces

Assume

• expect ✗ events per unit interval 0 "unit interval
" 1

• events are
"

independent
"

Divide interval into n equal- sized pieces
Pr [event happens in one piece ] = ¥ (and at most one event

per piece as n→ ao )
Events in different pieces mutually independent
✗ = # events in interval : ✗~ Bin (n,E)→ Pois (7)


