C S $70 -$ Spring 2024 Lecture 21 - April 4

Review of Previous Lecture

 \bullet Vaniance: For a random variable with $E[x]=\mu$ Van $(X) = E[(X - M)^2] = E[X^2] - M^2$
Standard deviation: $G(X) = \sqrt{Var(X)}$ Measures " spread " of the distribution \bullet To compute $E[X^2]$: $E[X^2] =$ $\sum_{a} a^{2} \times R$ $[X=a]$

Review (cont.)

 $Var(cX) =$

For any r.v. X and constant c $Var(cX) = c^2Var(X)$
c.f. $E[cX] = cE[x]$ $E[(cX-E[cX])^{2}]$ $= E\left[\left(c\left(x-E(x)\right)\right)^{2}\right]$ = C^2 $E[(K-E[x])^2]$ If X, Y are independent, then

 $Var(X+y) = Var(X) + Var(Y)$

Review (cont.)

• For any two r.v.'s X, Y :

 $Var(x+y) = Var(x) + Var(y) + 2Cov(x, y)$

Covariance $Cov(X, Y) = E[XY] - E[X]E[Y]$ = $E[(x-\mu_{x})(y-\mu_{y})]$

(lies in $[-1, +1]$) $Cov(X, Y)$ $6(x)6(y)$

• Concentration inequalities " how far is a r.v.

away from its expectation?"

variance

small

 $E[x]$

• Markov 's Inequality

• Chebyshev's Inequality (based on Variance) tration inequalities:
Internation (basis)
Sher's Inequality (basis)
of Lange Numbers
(Lange Vanime)
(Explanation)

• Applications to Estimation

• Law of Large Numbers

µ large variance

 \bigwedge

Concentration Inequalities

 Q : What are they?

^A : Inequalities that tell us how far ^a r. v. ✗

is likely to be from its expectation $E[X]$?

^Q : why is this useful ? ^A : Expectations are easy to compute - so if ✗ is close to Efx], we have a lotof info . about \times

Theorem (Markov's Inequality]

For any non-negative random variable X and any c: $\frac{1}{8}\frac{non-negative}{100}$ $x E[X]$

Recall: $E[X] = np = n/2$

Markov: $Pr[X7C] \leq \frac{E[X]}{C}$

$\Rightarrow P(1 \times 7^{3n}/4) \leq \frac{4}{3n} \times E[x] = \frac{2}{3}$

Note: This upper bound is correct but far from the best bound we can get - see later!

 Q : Suppose we also know $Var(x) - d$ oes this help?

A: Yes ! Recall that Var(X) measures expected Gauared) distance of ✗ from ECX]

If $Var(X)$ is small, then the prob. that X is farfrom ECX] should be small

Chebyshev 's Inequality Theorem: For any r.v. X and any c: $Pr[X-E[X] \ge c] \le$ $\frac{Va_{V}(X)}{C^{2}}$ Compare with Markov: • Doesn't receive ✗ to be non - negative • Gives a two-sided bound (above and below E- [×]) • c is replaced by c-

Theorem : For any r.v. X and any c :

 $Pr[X-E[X] \ge c] \le$ $\frac{Va_{V}(X)}{C^{2}}$

 $Proof:$ Define the r.v. $Y=(X-E[X])^2$

Note that Y is non - negative so we can apply Markov's inequality to it :

 PV $(Y \ge c^2)$ $\le \frac{E[Y]}{c^2}$

 $i.e.$ Pr $[(X E[x]^2 \geq c^2$] $\leq \frac{E[(X-E[X])^2]}{c^2}$]

i.e. $Pr\left[|XE[x]|zC \right] \leq \frac{Var(X)}{C^2}$

 $Recall : E[X] = np =$ $Var(X) = NP(I-p) = N/4$

 $Chelayshev: \qquad Pr [|X-E[x]|z c] \leq \frac{Var(X)}{c^2}$ (ov $X \leq n/4$) \Rightarrow $\mathbb{P}([X \times \frac{3n}{4}] \leq \mathbb{P}([X \in \mathbb{E}[x]) \times \frac{n}{4}]$ $X - \frac{n}{2} \frac{n}{4}$ $\frac{1}{(n/4)^2}$ $\frac{1}{(n/4)^2}$ $\frac{1}{n}$

µ This is much better than Markov (which gave us $Pr[X \times \frac{34}{4}] \leq \frac{2}{3}$

Equivalent Statement of Cheloyshev For any r.v. $X:$ 6(x) = $\sqrt{Var(X)}$ $Pr[X-E[X]] > K\sigma(X)] = \frac{1}{k^2}$ $\frac{\partial^2 u}{\partial x^2}$: Plug in $c = k \sigma(x)$ to Chelayshev: $P_r[1X-E[X] | > kG(x)] \leq \frac{Var(x)}{(kG(x))^2}$ = $\frac{V_{\alpha v}(x)}{k^2 V_{\alpha v}(x)} = \frac{1}{k^2}$ Example: For any r.v. X, the probability of being
move than 2 s.d.'s from mean is $\leq 1/4$

Recall $E[X] = \lambda$ $\text{Var}(X) = \lambda$ $\sigma(X) = \sqrt{\lambda}$

Chebyshev: $R[|X-\lambda| \ge k\sqrt{\lambda}] \le \frac{1}{k^2}$

Application : Statistical Estimation

Goal: Estimate the proportion of smokers in the population

" <u>Opinion Toll</u> " : Take a random sample of N people

Ask each person if they're a smoker

Output the fraction of the sample that says |
|
| Yes "

Key Question: How large does N have to be to
ensure accuracy ±1% & confidence 95%?

Note: Assume for simplicity we choose people with replacement so that samples are all independent

 $E[\hat{\mu}] = \mu$ Var $(\hat{\mu}) = \frac{5}{N}$

Suppose we want accuracy $\pm \epsilon \mu$, confidence $1 - \delta$

$Chebyshev : Pf[\hat{\mu}-\mu|\pi\epsilon\mu] \leq$ $\frac{\partial w(\mu)}{\partial \xi^2 \mu^2} = \frac{6}{\sqrt{\epsilon^2 \mu^2}}$

So to ensure confidence 1-8 we need inherent

cost

 $Var(\hat{\mu}) = \frac{5}{N}$ $E[\hat{\mu}]=\mu$

Suppose we want accuracy ± EM, confidence 1-8

Chebyshev: $\overline{H}[\hat{\mu}-\mu|\pi \epsilon \mu] \leq \frac{Var(\hat{\mu})}{\epsilon^2 \mu^2} = \frac{6^2}{N \epsilon^2 \mu^2}$

50 to ensure confidence 1-5 we need

 $\frac{6^{2}}{N \epsilon^{2} \mu^{2}}$ < δ \Rightarrow $N \gg \frac{6^{2}}{\mu^{2}} \times \frac{1}{\epsilon^{2} \delta}$ estimation problem-specific

inhevent

 $\sqrt{\cosh a}$

 $cost$

What values should we plug in for 5, M?

We can use any upper bound on 6 and any lover bound on M

E.g. for US wealth, could use M 7, 50,000
But σ is a problem! Elon Musk (\$190B) => $\sigma^2 \frac{(190 \times 10^9)^2}{325 \times 10^6}$ z 10^{14} (1)

N 7, $\frac{6^{2}}{\mu^{2}} \times \frac{1}{\epsilon^{2} \delta}$

independent, identically Law of Large Numbers distributed Theorem : Let X1, X2, ... be a sequence of *i.i.d.* random variables with common expectation $M = E[X_i]$. N Than $\frac{1}{N}S_{N}:=\frac{1}{N}\sum_{i=1}^{N}X_{i}$ satisfies $Pr\left[\left|\frac{1}{N}S_{N}-M\right|\geq \epsilon\right]\rightarrow 0$ as $N\rightarrow \infty$ for any $E > 0$.

English : We can achieve any desived accuracy ϵ > 0 and any desired confidence $1-\delta < 1$ by taking the sample size N large enough

Law of Lange Numbers independent, identically distributed Theorem: Let X, X2, ... be a sequence of i.i.d. random vanables with common expectation $M = E[X_i]$. Than $\frac{1}{N}S_{N}:=\frac{1}{N}\sum_{i=1}^{N}X_{i}$ satisfies $\cos N \rightarrow \infty$ $P_I\left[\left|\frac{1}{N}S_N-\mu\right|\geq \epsilon\right]\longrightarrow 0$ for any $\epsilon > 0$. $Box: Let Y = \frac{1}{N}S_{N}$. Then $E[Y] = \frac{1}{N}\sum_{i=1}^{N}E[X_{i}] = \mu$ $Var(Y) = \frac{1}{N^2} \sum_{i=1}^{N} V_{AV}(X_i) = \frac{\sigma^2}{N}$ where $\sigma^2 = V_{AV}(X_i)$ Orelogikev: $\mathbb{P}\left(\left|y-\mu\right|>\epsilon\right) \leq \frac{v_{av}(y)}{\epsilon^2} = \frac{\sigma^2}{N\epsilon^2} \Rightarrow 0$