C S 70 $-$ Spring 2024 Lecture 23 - April 11.

Recap of Previous Lecture

- · Continuous r.v. X is described by a prob. density function $f: \mathbb{R} \rightarrow \mathbb{R}$ s.t.
	- $f(x) \ge 0$ $\forall x$
	- $\int_{-\infty}^{\infty} f(x) dx = 1$
	- $Pr[a \le X \le b] = \int_{a}^{b} f(x) dx$
- · Mote: $f(x)$ is probability density per unit length $R(x \le X \le x+dx] \approx f(x)dx$ for infinitesimal dx
- $F(x) = Pr[X \le x] = \int_{-\infty}^{x} f(z) dz$ · Cumulative dist. fun. :

 $f(x) = \frac{d}{dx}F(x)$

 $x \times dx$

 \overline{P}

 \overline{a}

Continuous uniform distribution on [L, R]:

 $f(x) = \begin{cases} 0 & x < L \\ 1/(R-L) & L \le x \le R \\ 0 & x > R \end{cases}$ $\frac{1}{(R-L)} \left[\begin{array}{c} 1 & \frac{1}{(R-L)} \\ 0 & R \end{array} \right]$

 \mathbf{R}

For $L \le a \le b \le R$: $P_v(a \le X \le b) = \frac{b-a}{R-L}$

• Expectation: $E[X] = \int_{-\infty}^{\infty} x f(x) dx$

Unique: $Var(X) = \int_{-\infty}^{\infty} X^2 f(x) dx - E[X]^2$ $E[X^2]$

 $R[a\simeq X\simeq b, c\simeq y\simeq d]=$ $\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$

• X, Y are independent if Va, b, c, d: $Pr[a \le X \le b, c \le Y \le d] = Pr[csX \le b] \cdot Pr[c \le Y \le d]$

 X, y independent => $f(x, y) = f(x) f(y)$

←From Last Lecture ! Example : Two - round game • Round ¹ : You stake \$1 and win amount ✗ fou stake Jbl and m
uniform in [O, l] • Round 2 : You stake ✗ and win amount Y uniform in [0, nd ain amount 9
X] winnings from Rand 1 \bullet $f(x,y)=0$ outside red triangle \mathcal{F} • Density of X is uniform Density of X is uniform
on [0, 2] e_{i} Given $X = x$, density of Y is uniform ℓ $\overline{\mathsf{X}}$ on [⁰, [×]] • flx, ^y) ⁼ $\begin{cases} \frac{1}{e^x} \\ 0 \end{cases}$ for $(x,y) \in \Delta$ 0 otherwise

 \bullet $f(x,y)=0$ outside red \triangle

- Density of ✗ is uniform y ensay of x 1s uniform
on $[0, l]$
- Given [×], density of ^y is uniform α [O₁x]
- $f(x,y) = \{$ $1/e_{x}$ for $(x,y) \in \Delta$ 0 otherwise
	- $f(x,y) = f_x(x) f_{y|x}(y) =$ $\frac{1}{\ell} \times \frac{1}{\times} = \frac{1}{\ell \times}$
- $Cf.$ discrete: $R[X=a, Y=b] = R[X=a]P_Y[Y=b|X=a]$

 \circ

✗

 Z ["]

>

 $\overline{\bm{X}}$

Exponential distribution

• Normal (Gaussian) distribution

 $\left(\begin{smallmatrix} 1\ 1\end{smallmatrix}\right)$ averages always look like Ganssians"!)

Exponential Distribution

Continuous-time analog of Geometric distribution

 $Recall : X \sim Geom(p)$ $Pr [X=k] = (1-p)$ $\overline{r-1}$ p

Interpretation: $X = no.$ of trials with the

first success where $p =$ success prob.

Exponential distribution measures the time we have to wait until some event happens , given that events happen at fixed rate λ (in continuous time)

Normal (a.k.a . Gaussian) Distribution

is a normal r.v. with parameters (M, ϵ^2).

We write $X \sim N(M, \sigma^2)$

 $M=0$, $\sigma=1$ \longrightarrow standard normal distribution

Fact: All normal distributions are the same up to shifts and scaling

If $X \sim N(\mu, \sigma^2)$ then $Y = \frac{X-\mu}{\sigma} \sim N(0,1)$

Fact: All normal distributions are the same up to shifts and scaling

If $X \sim N(M, \sigma^2)$ then $Y = \frac{X - M}{\sigma} \sim N(0,$ 1)

Books/internet usually just give c.d. f. of standard new , i.e., you can look up $Pr[Y \le C]$ for $Y \sim N(0,1)$ But then if $X \sim N(M, \sigma^2)$ you can get $P(X \leq C) = P_r \left[Y \leq \frac{C - M}{5} \right]$ $\frac{11}{10}$ Cav
 $\frac{C-\mu}{5}$ Som table

Expectation & Variance Suppose $X \sim N(0,1)$ is standard normal Then p.d. f. is $f(x) = \frac{1}{\sqrt{2\pi}}$ e $x^{2}/2$ ω α $E[X] =$ $\int_{-\infty}^{\infty} x f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} x e^{-x} dx$ $x^{2}/2$ $dx + \int xe^{-x/2} dx = 0$)
—ao $e^{-x^2/2}$ symmetric about O

Expectation & Variance (cont.)

For $X \sim N(0,1)$: $E[X] = 0$ $\forall x(x) = 1$

For $X \sim N(M, \sigma^2)$, then $Y = \frac{X-M}{\sigma} \sim N(0, 1)$ so:

 $E[Y] = E[X - M] = 0$

 $\Rightarrow E[X] = \mu$

 $Var[Y] = Var(\frac{X-\mu}{6}) = 1$

 \Rightarrow $\bigvee \alpha \vee (x) = 6^2$

This explains notation M, σ^2

Sum of Independent Normals

Fact: If $X \sim N(0,1)$ and $Y \sim N(0,1)$ are independent,

and a, b are constants, then

 $aX + bY \sim N(0, a^{2}+b^{2})$

Note: Expectation & variance ave obvious from: $E[aX+by] = aE[X] + bE[Y] = 0$ $Var(aX+bY) = Var(aX) + Var(bY)$ [independent] $= a^2Var(X) + b^2Var(Y) = a^2 + b^2$

Not so obvious: $\alpha X + b Y$ is Normal

| Proof! Since X, I are independent their joint p.d.f. $\lim_{x \to 0} e^{-x^2 + y^2}$

is $f(x, y) = f_x(x) f_y(y) = \frac{1}{2\pi} e^{-(x^2 + y^2)}$ This function is votationally symmetric around 0 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $0.05 \mathbb{Z}^2$ So $aX + bY = t$ is a vertical "slice" that can be rotated to $X = \frac{\tau}{\sqrt{a^2+b^2}}$ (preserves distance from O) Details : Note 21

Fact: If $X \sim N(0,1)$ and $Y \sim N(0,1)$ are independent, and a, b are constants, then $aX + bY \sim N(0, a^{2}+b^{2})$

Generalization : If $X \sim N(M_x, 6x^2)$ and $Y \sim N(M_y, 6y^2)$

are independent, then

 $aX+by \sim N(aM_{x}+bM_{y}, a^{2}\sigma_{x}^{2}+b^{2}\sigma_{y}^{2})$

Roof: Apply above Fact to standard normals $\frac{X-M_{x}}{G_{x}}$ and $\frac{Y-M_{y}}{G_{y}}$

Central Limit Theorem

Recall: average of many independent samples of the same r. v.

 $X_1, X_2, -- -- ii.i.d.$ $E[X_i] = \mu$ $Var(X_i) = \sigma^2$

where $S_N = X_1 + \cdots + X_N$ Sample average: $\frac{1}{N}S_N$

Amazing Fact: As N-sco, the distribution of $\frac{1}{N}S_N$ approaches $N(\mu, \sigma_N^2)$

 $Var(\frac{1}{N}S_{N}) = \frac{1}{N^{2}}\sum Var(X_{i}) = \frac{\sigma^{2}}{N}$. $E[\frac{1}{N}S_{N}]=\frac{1}{N}\sum E[X_{i}]=\mu$

Scale JS, so that limit is standard normal:

