
CS 70 - Spring 2024

Lecture 27 - April 25

-

Today : Intro
.
to Randomized Algorithms

• Finding large prime numbers

• Fingerprinting
• Pattern matching

1 . Primality testing

cryptographic applications (e. g. RSA) receive very
large prime numbers (~ loos of digits)

Q: How do we get hold of them ?

A : Generate a random number with 100s of digits
☒ test if it is prime !

If not , try another one . .
.

Q : How many numbers do we expect to try ?

A : Depends on the density of primes

Prime NumberTheorem : Let it (n) denote the

number of primes ← n . Then

In ± It (n) ← 1-26
In tf n z 17

Corollary : Roughly 1 in every bun numbers e n
is prime .

[E-g. n = 10500⇒ him = 111507

So no
. of trials until we find a prime

has Geometric (Kun) distribution
⇒ El#trials] = Inn

Khun

Pvlmorethan klnn trials] = 4-⇒ £ e-
k

(¥1m we -1

Q: How do we get hold of them ?

A : Generate a random number with 100s of digits
test if it is prime !

If not , try another one . .
.

Bigger Question : How do we test if a very large
number n (with 100s of digits) is prime ?

Simple algorithm : try all divisors !

FOI a = 2,3 , - - .

,
in

if a divides n then halt output
"

not prime
"

outfit "prime
"

Simple algorithm : try all divisors !

for a = 2,3 , - - .

,
in

-

if a divides n t.hn halt ☒ output
"

not prime
"

output "prime
"

Is this a good algorithm ?

How many divisors will we
have to try ?

Think : n I 10500 (500 digits , a 1700bits)

A simple randomized algorithm

repeat many times

pick a c- [2
,
K] uniformly at random

if a divides u then halt ☒ output
"

not prime
"

outfit
"

prime ?
"

Is this a good algorithm ?
witness

A better randomized algorithm ?

Need a better witness for n being not prime (so
that the number of witnesses is large)

Recall : Fermat's Little Theorem

For any prime p and any a c- [1 , - - , p- I] :

AP -1 = 1 (mod p)

Corollary : If we find an a c- [1
,

. . ,
n- I] S.t.

an
-' f- 1 (mod n)

then we know for sure that n is It prime !

A better algorithm : Fermat Test

pick a c- [1 , . . . , n
- t] u . a. r.

if go.d.la.nl/=1t..-enha-txoulput-
"

not prime
"

if a
" '
=/ I Cmodn) then - . .
-

else output
"

prime ?
"

Properties
• Outputs

"

not prime
"

⇒ n is definitely not prime
• Outputs

"

prime ?
"

⇒ either n is prime , or it's

not prime but the algorithm
picked an a that's not a witness

• Runningtime : Ollogn) = Of# of digits inn)

• Runningtime : Ollogn) = Of# of digits inn)

Why ?

> gcd Ca ,n) runs in 0110gn) steps via
Euclid's Algorithm

> a
"'
can be computed in O(login) steps

by repeated squaring :

e-g. for a
53

53 = 32+16 + 4+1 = 110101 in binary

953 = a3Z ✗ a'
b
✗ a
"
× at

→ enough to compute
a
,
a} a4 , a

8
,
at6
,
932

Density of witnesses
Let ZE = {a c- [1 , . . > n- I] : gcdla.nl = I }

Defy : A witness for n is a number a c- ZE
St. ann

- "
f- 1 (mod n)

Claim : For any n , if 7 a witness a for n
then at least half of all a c- ZE are witnesses !

Corollary : The Fermat Test is correct with
probability 7 Yz on all inputs n except
fer non- primes in that have no witnesses at all

→"

Carmichael Numbers
"

A better algorithm : Fermat Test

pick a c- [1 , . . . , n
- t] u . a. r.

if go.d.la.nl/=1t..h-enha-txoulput-
"

not prime
"

if a
" '
=/ I Cmodn) then - . .
-

else output
"

prime ?
"

Properties
• Outputs

"

not prime
"

⇒ n is definitely not prime
• Outputs

"

prime ?
"

⇒ either n is a Carmichael
Number

, 01

Pr [his prime] 7 112

Claim : For any n , if 7 a witness a for n
then at least half of all a c- ZE are witnesses !

Proof : ZF is a group under multiplication
Cmodn) . I. e. :

• [Identity] : 1 c- ZE⑤ • tnvevses] : a c- ZE ⇒ a-
'
c-ZE

1st / 191
• [Closure] : a.b c- ZE ⇒ ab c- IF

The set 5- {a c- 21¥ : an - ' = I fnodn)} is a
subgroup (because a. be S ⇒ ab c- 5)

Lagrange's Theorem : 1St divides 12151

n is not aCN⇒ 1st < 1251 ⇒ IS 1<-1-2125×1 ✓

Two remaining Questions :

1
. Why is Pr[n is prime] 7 Yz good enough ?

2 . What about Carmichael Numbers ?

1
. Why is Pr[n is prime] 7 Yz good enough ?

A : just repeat the Fermat Test K times ,

choosing a independently each time

suppose n is not prime and not a CN

Them Pr [all K tests output
"

prime ?
"] s 2-K

If we take k= 1000 Gay), this is negligible !

2 . What about Carmichael Numbers ?

Deff : n is a Carmichael Number if it is
not prime and an

-'
= 1 (mod n) ta c- ZE

CNS are rare : 255 CNS ⇐ 108

~ 20 million CNS a- 1021

First few CNS : 561
, 1105, 1729. . - -

• There are similar randomized algorithms (using
more complicated witnesses) that handle CNS

• There are also deterministic algorithms (that are
always correct) but they are too inefficient GOHognY))

Proof that 561 is a Carmichael Number :

561=3×11×17

Claim : a5b° = 1 (mod 561) Hae 21¥61

Sufficient to show a"°= 1

mm:L ?z } ⇒ by
C. RT.

mod 11
a560= I mod 561

Now note : a'=L Cmod 3) ⇒ a 0--1 @od 3)

a'0--1 (mod 11) ⇒ a%=l (mod 11)
a' 6=1 (mod 17) ⇒ a5b°=l (mod 17) ✓

2. Fingerprinting Pattern Matching

arm>

* Iexpensive, unreliable

Alice link Bob

a = ao
. . -
a
,- ,

D= bo - - - be - ,

Alice Bob each have a copy of a large database
consisting of L bits (L very large)

They want to check if their copies are identical
But they don't want to send all L bits
Idea : Send a much smaller fingerprint of their data

turn>

expensive, unreliable

Alice link Bob

A = ao
- - - AL -, D= bo - - - b← ,

Idea : Send a much smaller fingerprint of their data

View a=ao . . -an b= bo . . - be , as L -bit numbers

Alice : picks a random prime p c- 12 . . . T]

computes Fp (a) : = a mod p
sends p and Fp (a) to Bob

Bots : computes Fp (b) : = b mod p
if Fp (a)¥ Fp (b) outputs

"

not identical
"

else outputs
"

identical ? "

Alice : picks a random prime p c- 12 . . . T]

computes Fp (a) : = a mod p
sends p and Fp (a) to Bob

Bots : computes Fp (b) : = b mod p
if Fp (a)¥ Fp (b) outputs

"

not identical
"

else outputs
"

identical ? "

Properties
Outputs

"

not identical
"

⇒ definitely a =/ b
Outputs

"

identical ?
"
⇒ eithera=b of

a=/ b but a=b mod p

terror

Outputs
"

identical ?
"
⇒ either a=b OI

atb but a=b modp

Claim : If a =/ b and p is a random prime in 12 . -T]

them Pr / a=b(mod p)) s L¥T
Proof : a=b (modp) <⇒ a - b = 0 fuodp)

⇐ pl ta- bl

But /a- bl is an L - bit number, so it has
at most L prime factors !

Hence Pr / a=b Cmodp)) £ ,¥,fLY ✓
R
prime
number thm .

Corollary : Pr/ error] s 4m¥

Corollary : Pr/ error] s 4m¥

How should we set T ?

If we set F-= 4 Llnl then

Pilewort t L . lnL+YYmL+ln_4
= ¥11 + HEE + EE]
£ tz

→ Can boost to ⇐ 2-
K
with K independent trials

ALSO : T= 4Llnl ⇒ p has 0(log 4 bits
so fingerprint Fp (a) sent by Alice is exponentially smaller
thanthe database itself !

Example :

Suppose L = 233 (= 1GB)
-1=264 (⇒ fingerprints are 64-bit words)

Them Prferror] ⇐ L¥T ± 2
"

✗ 26¥
= 2-25

= 3.4×10-7

3. Pattern Matching
source

text✗=
×, ✗

ny = pattern
y , Ym

Question : Does Y occur as a contiguous substring in✗ ?
1. e.

,
is $ = ✗(i) : = Xi Xiu - - . Xi+me, for some i ?

Simple algorithm :

Lori : = 1 to n -m+ 1

If Y = ✗ (i) outpt
"matchfound

"

halt

output
"

no match
"

Running time : 0 (nm)

Clever randomized algorithm : use fingerprints !

pick a prime p c- [2, . - ,T] u . a.r.

compute Fp (Y) := Ymodp
Iori : = 1 to n -m+ I

compute Fp (Xli)) : = ✗lil mod p

If Fp (9)= Fp (Xli)) output
"matchfound

"

halt

output
"

no match
"

Clever randomized algorithm : use fingerprints !

pick a prime p c- [2, . - ,T] u . a.r.

compute Fp (Y) := Ymodp
Iori : = 1 to n -m+ I

compute Fp (Xli)) : = ✗lil mod p

If Fp /Y)-_ Fp (Xli)) output
"matchfound

"

halt

output
"

no match
"

fervor] = Pr /Fi : Y =/ ✗lil y-✗ Ii)=OKodp)]
union → ± §É

'

Pr [y # ✗ Ii) Y -✗ Ii)=O (modp)]
bound

f n x m¥T [Y-Xli) has m bits
⇒ em prime factors]

So if we set T= 4 nmhrlnm) then Prlerrov] ⇐ I

So if we set T= 4 nmhrlnm) then Pr/error] ⇐ tz

Withthis choice of T
,
number of bits in p is

0 (log (nm)) = Ollogn) .
So can assume arithmetic modp is fast .

Running time of algorithm ?

- compute Fp (Y) 01m)
- compute Fp (✗ (Il) 0 (m)
- n iterations :

compute Fp (✗ (il) of)

compare Fp (y) = Fp (✗(iz) Oa) } %)
Total : Ofn) [much fasterthan 0 (nm)]

Computing Fp (Xliii)) from Fp (Xlii)
Xli)

'

Xi Yin Xitz - - - Xi-1m- I
'

✗ itm
,

✗City

✗(itD= 2 (Xli) -2m
- '

✗i)t- Xian

⇒ Fp (Xliii) = 21¥ (Xli)) -2m
- '

✗;) + ✗ i+m (mod p)

receives four arithmetic ops . modp → ON time

Example :

Searching for a pattern in a DNA sequence

say n= 228 , m= 2
" (search for 1000 - bp pattern

in 100M-bp Chromosome
)

Take T = 264 (64-bit words)

Pr terror] ⇐ nm w¥ ± 2
"

. 26¥
= 2-

19

I 0.000005

Note : Deterministic 0th algorithms do exist, but
they're much harderto implement and have overheads

Life After cs7O

CS 170 - Algorithms
CS 172 ⇒ Complexity ☒ Computability

CS 174 - Randomized Algorithms
0171 - Cryptography
0176 - Computational Biology
EECSIZG - Probability Random Processes

EECS 127 - Optimization

THANKS
!

GOOD

Lucky
Course Evaluations : course - evaluations - berkeley.edu

