CS70 - Spring 2024 Lecture 27 - April 25

Today: Intro. to Randomized Algorithms

· Finding large prime numbers

• Fingerprinting

1. Primality testing

Cryptographic applications (e.g. RSA) require very

large prime numbers (~100s of digits)

Q= tton do ve get hold of them?

A: Generate a random number with 100s of digits & test if it is prime! If not, try another one

How many numbers do we expect to try? Q: A: Depends on the density of primes

Prime Number Theorem: Let $\pi(n)$ denote the

number of primes < n. Then

Corollary: Roughly 1 in every Inn numbers < n is prime. [Eg. n = 10⁵⁰⁰ => lnn ≈ 1150] So no. of trials until we find a prime has Geometric (1/mn) distribution ⇒ E[#trials] ≈ lnn $Pr[mathan k lnn trials] = (1 - \frac{1}{mn}) \leq C^{-k}$ $\left(\left(\frac{1-1}{m}\right)^{m}-e^{-1}\right)$

A: Generate a random number with 100s of digits & test if it is prime! If not, try another one ...

Bigger Question: How do we test if a very large monber n (with 100s of digits) is prime ?

Simple algorithm: try all divisors!

for a = 2, 3, ..., 5n

if a divides n then halt & output "not prime"

Output "prime"

Simple algorithm: try all divisors!

for a = 2,3,..., Jr. if a divides n then halt & output "not prime" Output "prime"

Is this a good algorithm? How many durisons will we have to try?

A simple randomized algorithm

repeat many times pick a \in [2, 5n] uniformly at random if a divides n then halt & output "not prime" output "prime?" witness Is this a good algorithm?

A better randomized algorithm? Need a better <u>witness</u> for n being not prime (so that the number of intresses is large)

Recall: Fernat's Little Theorem For any prime p and any a < [1,..., p-1]: $a^{p-1} = 1 \pmod{p}$

Corollary: If we find an a ([1,..,n-1] s.t.

 $a^{n-1} \neq 1 \pmod{n}$

then ne know for sure that n is not prime!

A better algorithm: Fermat Test

pick $a \in [1, ..., n-1]$ u.a.r. if $gcd(a,n) \neq 1$ then halt & output "not prime" if $a^{n-1} \neq 1 \pmod{n}$ then else output "prime?"

Properties • Outputs not prime => n is definitely not prime

Outputs "prime?" => either n is prime, or it's
 not prime but the algorithm
 picked on a that's not a witness

Running time : O(logn) = O(# of digits inn)

 Running time : O(logn) = O(# of digits inn) Why? >gcd(a,n) runs in O(logn) steps via Euclid's Algorithm > aⁿ⁻¹ can be computed in O(logn) steps by repeated squaring: e.g. for a⁵³ 53 = 32 + 16 + 4 + 1 = 110101 in binary $\alpha^{53} = \alpha^{32} \times \alpha^{16} \times \alpha^{4} \times \alpha^{1}$ \rightarrow enough to compute a, a², a⁴, a⁸, a¹⁶, a³²

Density of witnesses

Let $Z_n^* = \{a \in [1, ..., n-1] : gcd(a, n) = 1\}$

 $\frac{\text{Defn}: A \text{ witness for } n \text{ is a number } a \in \mathbb{Z}_n^*}{\text{s.t. } a^{n-1} \neq 1 \pmod{n}}$

 $\frac{Claim}{then}: For any n, if \exists a witness a for n \\ then at least half of all <math>a \in \mathbb{Z}_n^*$ are witnesses!

<u>Corollary</u>: The Fermat Test is correct with probability 7 1/2 on all inputs n except for non-primes n that have no witnesses at all "Carmichael Numbers"

A better algorithm: Fermat Test

pick a ∈ [1, ..., n-1] u.a.r. if gcd (a,n) = 1 then halt & output "not prime" if $a^{n-1} \neq 1 \pmod{n}$ then else output "prime?"

Properties • Outputs not prime " => n is definitely not prime

Outputs "prime?" => either n is a Carmichael

Number, or PI[n is prime] 7, 1/2

Claim: For any n, if I a witness a for n then at least half of all at Zn are witnesses!

Proof: Zn is a group under multiplication (mod n). I.e.:

151 191

[Jdentity]: 1 ∈ Z^{*}_n (Inverses]: $a \in \mathbb{Z}_n^* \implies a^- \in \mathbb{Z}_n^*$ $a, b \in \mathbb{Z}_n^* \Rightarrow ab \in \mathbb{Z}_n^*$ • [Closure]:

> The set $S = \{a \in \mathbb{Z}_n^* : a^{n-1} = 1 \pmod{n}\}$ is a subgroup (because a, b \in S => ab \in S) Lagrange's Theorem: ISI divides 12") $n \text{ is not } a CN => |S| < |Z_n^*| => |S| < \frac{1}{2} |Z_n^*|$

Two remaining questions:

1. Why is Pr[n is prime] 7 1/2 good enough?

2. What about Carmichael Numbers?

1. Why is Pr[n is prime] 7 1/2 good enough ? A: Just repeat the Fermat Test & times, choosing a independently each time Suppose n is not prime and not a CN Then $Pr[all k tests output "prime?"] \leq 2^{-k}$ If we take k = 1000 (say), this is regligible ! 2. What about Carmichael Numbers?

Defn: n is a <u>Carnichael Number</u> if it is not prime and $a^{n-1} = 1 \pmod{n}$ $\forall a \in \mathbb{Z}_n^*$

CNs are rare: $255 \text{ CNs} \leq 10^8$ ~ 20 million CNs $\leq 10^{21}$

First feu CNs: 561, 1105, 1729, ...

There are similar randomized algorithms (using more complicated nitnesses) that handle CNs

There are also deterministic algorithms (that are always correct) but they are too mefficient (~O(kogn)⁶))

Proof that 561 is a Carnichael Number:

 $56| = 3 \times 11 \times 17$ <u>Claim</u>: $a^{560} = 1 \pmod{561}$ $\forall a \in \mathbb{Z}_{561}^*$

Sufficient to show $a^{560} = 1 \mod 3$ ($\Rightarrow by C.R.T.$ mod 11) $a^{560} = 1 \mod 561$

Now note: $\alpha^2 = 1 \pmod{3} \Rightarrow \alpha^{50} = 1 \pmod{3}$

 $a^{10} = 1 \pmod{11} \Longrightarrow a^{560} = 1 \pmod{11}$

 $a^{16}=1 \pmod{17} \Rightarrow a^{560}=1 \pmod{17}$

Alice & Bob each have a copy of a large database consisting of L bits (L very large) They want to check if their copies are identical But they don't want to send all L bits <u>Idea</u>: Send a much smaller <u>finger print</u> of their data

<u>Idea</u>: Send a much smaller <u>fingerprint</u> of their data View $a = a_0 \dots a_{L-1}$ & $b = b_0 \dots b_{L-1}$ as L-bit numbers

<u>Alice</u>: picks a random prime p∈ [2...T] computes F_p(a) := a mod p sends p and F_p(a) to Bob <u>Bob</u>: computes F_p(b) := b mod p if F_p(a) ≠ F_p(b) outputs "not identical" else outputs "identical?" <u>Alice</u>: picks a random prime $p \in [2...T]$ computes $F_p(a) := a \mod p$ sends p and $F_p(a)$ to Bob <u>Bob</u>: computes $F_p(b) := b \mod p$ if $F_p(a) \neq F_p(b)$ outputs "not identical" else outputs "identical?"

<u>Properties</u> Outputs "not identical" \Rightarrow definitely $a \neq b$ Outputs "identical?" \Rightarrow either a = b or $a \neq b$ but a = b mod p f error Outputs "identical?" => either a = b or a = b but a= b mod p

Claim: If $a \neq b$ and p is a random prime in [2..T]then $Pr[a=b(mod p)] \leq LmT$

 $\frac{Proof}{A}: a=b \pmod{p} \stackrel{2=>}{A}: a=b \pmod{p}$

But $|\alpha-b|$ is an L-bit number, so it has at most L prime factors !

Hence $Pr[a=b \pmod{p}] \leq \frac{L}{\pi(T)} \leq \frac{L\ln T}{T}$: $Pr[error] \leq \frac{L\ln T}{T}$

Corollary: Pr[error] < LINT

How should we set T? If we set T= 4 L In L then Pr[ervor] < L. lnL + lmlnL + ln4 4LmL $= \frac{1}{4} \left[1 + \frac{\ln \ln L}{\ln L} + \frac{\ln 4}{\ln L} \right]$ 5 1 \rightarrow Can boost to $\leq 2^{-k}$ with k independent trials Also: T= 4 L m L => p has O(log L) bits So fingerprint F, (a) sent by Alice is exponentially smaller than the database itself !

Suppose $L = 2^{33}$ $(\approx 1GB)$ $T = 2^{64}$ (=> finger prints are 64-bit words) Then $Pr[ervor] \leq L \ln T \leq 2^{33} \times \frac{64}{2^{64}}$ $= 2^{-25}$ $\approx 3.4 \times 10^{-7}$

3. Pattern Matching

Question: Does Y occur as a contiguous substring in X? J.e., is $Y = X(i) := X_i X_{i+1} ... X_{i+m-1}$ for some i?

Simple algorithm:

for i := 1 to n-m+1

if Y = X(i) output "match-found" & halt

output "no match"

Runningtime: O(nm)

Clever vandonized algorithm: use fingerprints!

pick a prime $p \in [2, ..., T]$ u.a.r. compute $F_p(Y) := Y \mod p$ for $i := 1 \pm 0$ n-m+1 compute $F_p(X(i)) := X(i) \mod p$ if $F_p(Y) = F_p(X(i))$ output "match-found" & halt output "no match" Clever randonized algorithm: use fingerprints!

pick a prime
$$p \in [2, ..., T]$$
 u.a.r.
compute $F_p(Y) := Y \mod p$
for $i := 1 \pm 0$ n-m+1
compute $F_p(X(i)) := X(i) \mod p$
if $F_p(Y) = F_p(X(i))$ output "match-found" & halt
Output "no watch"

 $Rr[error] = Pr[\exists i : y \neq \chi(i) & y - \chi(i) = 0 \pmod{p}]$ union bound $\rightarrow i = \sum_{i=1}^{m} Pr[y \neq \chi(i) & y - \chi(i) = 0 \pmod{p}]$ $\leq n \times m \ln T$ T $\leq m \text{ prime factors}$ So if we set $T = 4 \text{ nm} \ln(nm)$ then $Pr[error] \leq \frac{1}{2}$ So if we set $T = 4 \text{ nm} \ln(nm) + \text{hen} \Pr[\text{error}] \leq \frac{1}{2}$

With this choice of T, number of bits in p is O(log(nm)) = O(logn).So can assume arithmetic mod p is fast. Running time of algorithm? - compute Fp (Y) O(m)- compute Fp (X(1)) (m) compute $F_p(X(i)) = O(i) \int O(i)$ Compare $F_p(Y) = F_p(X(i)) O(i) \int O(i)$ - n iterations: compute Fp (X(i)) [much faster than O(nm)] Total: O(n)

Computing Fp(X(i+1)) from Fp(X(i)) Xi Xiti Xitz - - Xitm-1 Xitm Xi (it) X(it) $X(i+1) = 2(X(i) - 2^{m-1}X_i) + X_{i+m}$ $\Rightarrow F_{p}(X(i+1)) = 2(F_{p}(X(i)) - 2^{m-1}X_{i}) + X_{i+m}$

requires four arithmetic ops. mod p -> O(1) time

(mod p)

Searching for a pattern in a DNA sequence

Note: Deterministic O(n) algorithms do exist, but Negre much harder to implement and have over heads

Life After CS70

CS 170 Algorithms Complexity & Computability CS 172 Randomized Algorithms CS 174 Cryptography CS171 Computational Biology CS176 Probability & Randon Processes EECS 126 EECS127 Optimization

Course Évaluations: course-evaluations. berkeley.edu