C S $70 -$ Spring 2024 Lecture 27 - April 25

Today : Intro. to Randomized Algorithms

• Finding large prime numbers

Fingerprinting

•

1. Primalily testing

cryptographic applications (e. g. RSA) receive very

large prime numbers (~100s of digits)

Q: Haw do we get hold of them?

A: Generate a random number with 100s of digits ☒ test if it is prime ! If not, try another one. .

Q: How many numbers do we expect to try ? A : Depends on the density of primes

Prime Number Theorem: Let $\pi(n)$ denote the

number of primes $\leq n$. Then

Corollary: Roughly 1 in every low numbers < n is prime. [ϵ_9 $n = 10^{500} \Rightarrow h n n \approx 1150$] So no of trials until we find a prime \Rightarrow E $[$ $#$ trials $]$ \approx $|m n$ $R($ maethan k lnn trials] = $\left(1-\frac{1}{ln n}\right)^{kln n} \leq e^{-k}$

 $(1-\frac{1}{m})^{w} \sim c^{-1}$

A: Generate a random number with 100s of digits test if it is prime ! If not, try another one. .

Bigger Question : How do we test if ^a very large number n (with 100s of digits) is prime ?

Simple algorithm : try all divisors!

 $for a = 2, 3, ..., \pi$

if a divides n t<u>hen halt</u> & output "not prime"

outfit " prime "

Simple algorithm : try all divisors!

$for \, a = 2, 3, \ldots$ $for a = 2, 3, ..., \sqrt{n}$

if a divides n then halt & output "not prime"

output " prime "

Is this a good algorithm ? How many divisors will we have to try?

A simple randomized algorithm

repeat many times in many ranes $if a divides n. then half 8 output"$ not prime " outfit " prime ? " Is this a good algorithm ? witness

A better randomized algorithm ? Need a better witness for n being not prime (so that the number of witnesses is large)

Recall : Fermat's Little Theorem

For any prime p and any $a \in L$, - - $, p-1]$: $a^{p-1} = 1$ (mod p)

 $Covolaxy:$ If we find an $a \in \{1,$. . , ⁿ- ^I] S.t.

> a^{n-} ' \neq 1 (mod n)

then we know for sure that n is not prime!

A better algorithm : Fermat Test

pick $a \in [1,$.
.
. n-t] ^u. a.r.

- if god $(a, n) \neq 1$ then halt x output "not prime" $[1, ..., n-1]$ u.a.r.
 $[1, ..., n-1]$ u.a.r.
 $[n, n) \neq 1$ then half & output "not prime"
 $\neq 1$ (mod n) then $\overline{}$...
- if a $\frac{1}{2}$
- else output " prime ? "
- Properties • Outputs " not prime " \implies n is definitely not prime
	- Outputs " prime ? , => either n is prime, or its
		- not prime but the algorithm picked an a that's not a witness

• $Running time : $O(logn) = O(f+ of digits in n)$$ • $Runningtime : O(logn) = O(fof digits in n)$ Why ? \Rightarrow gcd (a, n) runs in $O((\log n)$ steps via Euclid's Algorithm $\rightarrow a$ $\frac{c}{1}$ can be computed in $O(logn)$ steps by repeated squaring : e.g. for a 53 $53 = 32 + 16 + 4 + 1 = 110101$ in binary $a^{53} = a^{32} \times a^{16} \times a^{4}$ $\overline{\mathbf{x}}$ at → enough to compute a^{2}, a^{4}, a^{4} a^{8} , a^{16} , a^{32}

Density of witnesses

Let $Z_{n}^{*} = \{a \in [1,$.., $n-1$: gcd $(a, n) = 1$

Defn: A witness for n is a number a $\in \mathbb{Z}_n^*$ $s.t.$ $a^{n-1} \neq 1$ (mod n)

Claim : For any n, if I a witness a for n then at least half of all $a \in \mathbb{Z}_n^*$ are witnesses!

Corollary : The Fermat Test is correct with probability 7 1/2 on all inputs n except for non-primes in that have no witnesses at all " Carmichael Numbers"

A better algorithm : Fermat Test

pick $a \in [1,$.
.
. n-t] ^u. a.r.

- if god $(a, n) \neq 1$ then halt x output "not prime" $[1, ..., n-1]$ u.a.r.
 $[1, ..., n-1]$ u.a.r.
 $[n, n) \neq 1$ then half & output "not prime"
 $\neq 1$ (mod n) then $\overline{}$...
- if a $\frac{1}{2}$
- else output " prime ? "

Properties • Outputs " not prime " \Rightarrow n is definitely not prime

• Outputs " prime ? , 㱺 either n is a Carmichael

> Number, <u>or</u> $Pr[n \text{ is prime}] \rightarrow \frac{1}{2}$

Claim : For any n, if I a witness a for n then at least half of all $a \in \mathbb{Z}_n^*$ are witnesses!

 $Prob: Z_{n}^{*}$ is a group under multiplication Z_n is a group
(mod n). I.e.

 $\begin{pmatrix} s \\ 0 \end{pmatrix}$ o [Jdentity]: $1 \in \mathbb{Z}_n^*$
O [Jnvevses]: $\alpha \in \mathbb{Z}_n^* \Rightarrow$ $ac\overrightarrow{z_{n}}$ => $a^{-1} \in \overrightarrow{z_{n}}$

 $151 | 191$ • [Closure]: $a, b \in \mathbb{Z}_n^* \Rightarrow ab \in \mathbb{Z}_n^*$

The set $S = \{a \in \mathbb{Z}_n^* : a^{n-1} = 1 \pmod{n} \}$ is a $subgroup$ (because $a, b \in S \Rightarrow ab \in S$) Lagrange's Theorem : 1SI divides $|Z_n^*|$ n is not a CN => 151 < $|Z_{n}^{*}|$ => 151 < $\frac{1}{2}|Z_{n}^{*}|$

. Why is Pr[ⁿ is prime] ⁷ Yz good enough ?

. What about Carmichael Numbers ?

1. Why is Pr[ⁿ is prime] ⁷ Yz good enough ?

A: Just repeat the Fermat Test K times,

choosing a independently each time

suppose ⁿ is not prime and not a CN

Then $Pr[all \; k \; tests \; output \; "prime ?"] \leq 2^{-k}$

If we take K = 1000 (say), this is negligible !

2 . What about Carmichael Numbers ?

Defn: n is a Carmichael Number if it is not prime and an- ' = 1 (mod n) $\forall a \in \mathbb{Z}_{n}^{*}$

 CNs are rare: 255 CNs $\leq 10^8$ \sim 20 million CNs \leq 10²¹

First few CNs: 561, 1105, 1729, ...

• There are similar randomized algorithms (using more complicated witnesses) that handle CNs

• There are also deterministic algorithms (that are always correct) but they are too inefficient $(00(\log n)^6))$ Proof that 561 is a Carmichael Number:

 $56 = 3 \times 11 \times 17$ Claim: $a^{560} = 1 \pmod{561}$ $\forall a \in \mathbb{Z}_{561}^{*}$

Sufficient to show $a^{560} = 1 \mod 3$ $\left\{\Rightarrow \text{by C.R.T.}\right\}$ mod $||$ $\sqrt{a^{560}} = 1 \mod 56$ $mod 17$

 $a^2 = 1 \pmod{3} \Rightarrow a^{560} = 1 \pmod{3}$ Now note:

 $a^{10} = 1$ (mad 11) => $a^{560} = 1$ (mad 11)

 $\alpha' = 1$ (wood 17) => $\alpha^{560} = 1$ (mod 17)

Alice Bob each have a copy of a large database consisting of L bits (L very large)

They want to check if their copies are identical

But they don't want to send all ^L bits

Idea : Send a much smaller fingerprint of their data

Idea : Send a much smaller fingerprint of their data

View $a = a_0 - a_{l-1}$ & $b = b_0 - b_{l-1}$ as $l - b$ it numbers

Alice: picks a random prime p E [2... T] computes $F_p(a) = \alpha$ mod p sends p and $F_p(a)$ to Bob $Bob:$ computes $F_p(b) = b$ mod p $if F_{p}(a) \neq F_{p}(b)$ outputs "not identical" else outputs " identical ? "

Alice: picks a random prime p E [2... T] computes $F_p(a) = \alpha$ mod p sends p and $F_p(a)$ to Bob $Bob:$ computes $F_p(b) = b$ mod p $if F_p(a) \neq F_p(b)$ outputs "not identical" else outputs " identical ? "

Roperties Outputs "not identical" \Rightarrow definitely $\alpha \neq b$ Outputs "identical?" \Rightarrow either $a = b$ or $a+b$ but a=b mod p terror

Outputs "identical?" \Rightarrow either $a = b$ or $\boxed{\alpha \neq b}$ but $\alpha = b$ mod p

Claim : If $\alpha \neq b$ and p is a random prime in $[2..T]$ then $Pr [a=b (mod p)] \le$ $\frac{L}{T}$

 $Proof: a=b \pmod{p} \iff a-b = 0 \pmod{p}$ \Leftrightarrow p | $|a-b|$

But /a-bl is an L - bit number, so it has at most L prime factors !

Hence $R [\begin{array}{ccc} a = b \pmod{p} \end{array}] \leq \frac{L}{\pi(T)} \leq \frac{L ln T}{T}$ R

prime

numberthm .

3. Pattern Matching

Question : Does Y occur as a contiguous substring in X? Vocs J occur as a configuous substruig un ?

Simple algorithm :

 $f_{0}v$ i := 1 to n-m+1

 $if Y = \times (i)$ output "match-found" & halt

output " no match"

Running time : 0 (nm)

Clever rand onized algorithm: use fingerprints!

Clever rand onuzed algorithm: use fingerprints!

 $85 y - x(i) = 0 (mod p)$ $R[evvoV] = R[3i : 9 \neq x(i)]$ union \Rightarrow \leq $\sum_{i=1}^{n-m}$ $Pf(y \neq x(i) \& y-x(i)=0$ (mdp)] \int y-X(i) has m bits $\leq n \times m \ln T$ => < m prime factors So if we set $T = 4$ um ln(nm) then $Pr[error] \leq \frac{1}{2}$

So if we set $T=4$ nm $ln(nm)$ then $Pr[error] \leq \frac{1}{2}$

With this choice of T, mumber of bits in p is $O(\log(nm)) = O(\log n).$ So can assume arithmetic mod p is fast. Running time of algorithm ? $-$ compute $F_p(y)$ $O(m)$ - compute $F_P(X(1))$ 0 (m) - n iterations:
compute $F_r(X(i))$ compute $F_p(X(i))$ 0(1) compute $F_p(X(i))$ 0(1) $(0n)$
Compare $F_p(Y(i)) = F_p(X(i))$ 0(1) $(0n)$ Total : Ofn) [much fasterthan ⁰ (nm)]

Computing F. (X(i+1)) from F. (X(i)) X_i X_{i+1} X_{i+2} - -- X_{i+m-1} X_{i+m} $\frac{1}{\sqrt{2}}$ $X(i+1) = 2(X(i) - 2^{m-1}x_i) + x_{i+m}$ \Rightarrow F_p (X(i+1) = 2 (F_p (X(i)) - 2ⁿ⁻¹X_i) + X_{i+m} $(mod p)$

veauises four arithmetic ops. modp -> 0(1) time

Searching for a pattern in a DNA secquence

Note: Deterministic O(n) algorithms do exist, but they're much harder to implement and have over heads

Life After cs7O

- CS 170 Algorithms CS 172 Complexity & Computability
- CS 174 Randomized Algorithms
- $CS171$ Cryptography
- $CS176$ Computational Biology
- $EECS126$ Probability Random Processes

 $EfCS$ 127 Optimization

Course Evaluations: evaluations - berkeley.edu