Stable Matching Problem

» ncandidates and n jobs.
» Each job has a ranked preference list of candidates.

» Each candidate has a ranked preference list of jobs.

Jobs Candidates
All1 2 3 1]|C A B
BI1 2 3 21| A B C
cila 1 3 3||lA C B

How should they be matched?
» Maximize total satisfaction.
» Maximize number of first choices.

» Minimize difference between preference ranks.

1/19

Objectives

Produce a matching that one cannot improve upon!
Definition: A matching is disjoint set of n job-candidate pairs.

Definition: A rogue couple j,c* for a pairing S:
j and c* prefer each other to their partners in S

2/19

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.

AlB C D
B|C A D
C/A B D
DA B C

Gv@

3/19

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal (candidate).

4/19

Example.

Candidates

Jobs

A
A B C
A C B

XXX

<mO

O <o

Te]

>

©

[m)

<
WJCVBr
a <C
S
Tl -m
©

ap<
Al
WAVA
=) m
S.pd
> o
nl<

— N ™M

5/19

The Propose and Reject Algorithm.

Each Day:
1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.
Stop when each job gets exactly one proposal.

What can we prove about it?
Does this terminate?

...produce a matching?

....a stable matching?
Who does “better”: jobs or candidates?

6/19

Termination.

Every non-terminated day a job crossed an item off the list.
Total size of lists? n jobs, n length list. n?

Terminates in < n? steps!

7/19

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate ¢ has a job j on a string,

any job, j/, on candidate c’s string for any day t' > t

is at least as good as j.

Example: Candidate “1” has job “C” on string on day 5.
1 has job “A” on string on day 7.
Does 1 prefer “C” or “A”?
c-"1,j-C,j-'AN, t=5t=7.
Improvement Lemma says 1 prefers A’
Day 10: Can 1 have “A” on a string? Yes.
1 prefers day 10 job as much as day 7 job. Here, j=/'.
Why is lemma true?

Proof Idea: Candidate can always keep the previous job on the
string.

8/19

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate ¢ has a job j on a string, any job, j/, on c’s
string for any day t' > t is at least as good as .

Proof:
P(k)- - “job on c’s string is at least as good as j on day t+ k”

P(0)— true. Candidate has j on string.
Assume P(k). Let j' be job on string on day t+ k.

Onday t+k+1, job j still on string.
Candidate ¢ can choose j/, or do better with another job, j’

That is, j/ > j by induction hypothesis.
And j” is better than j/ by algorithm.
— Candidate does at least as well as with j.
P(k) = P(k+1).
And by principle of induction, lemma holds for every day after f. O

9/19

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job j must have been rejected n times.

Every candidate has been proposed to by j,
and Improvement lemma

= each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.
= j must be on some candidate’s string!

Contradiction. O

10/19

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
Propose-and-Reject algorithm.

Proof:
Assume there is a rogue couple; (j,c*)

Jjf——— ¢ j prefers ¢* to c.

c c* prefers j to j*.
Job j proposes to ¢* before proposing to c.
So c¢* rejected j (since he moved on)

By improvement lemma, c¢* prefers j* to j.
Contradiction!]

11/19

Question: Proof of Job Propose and Reject a stable pairing uses?
(A) Contradiction.

(B) Uses the improvement lemma.
(C) Induction.

(D) The algorithm description.

(A), (B), (C), (D).

12/19

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x’s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x’s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.
True / False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:
j-optimal pairing different from the j’-optimal matching!
Yes? No?

13/19

Undzrst&ndmg thlm§I|ty: by example.

B: 1,2 2: BA
Consider pairing: (A,1),(B,2).
Stable? Yes.

Optimal for B?

Notice: only one stable pairing. If (A,2) are pair, (A,1) is rogue
couple.

So this is the best B can do in a stable pairing.

So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A 1,2 1: BA
B: 2,1 2: AB

Pairing S: (A,1),(B,2). Stable? Yes.
Pairing T: (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T
Pessimality? 14/19

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: some job is not paired with its optimal candidate.

Let t be first day some job j gets rejected by its optimal candidate c.

There is a stable pairing S where j and c are paired.

J* - knocks j off of ¢’s string on day t —> c prefers j* to j
By choice of t, j* likes c at least as much as its optimal candidate.
— J* prefers c to its partner ¢* in S.

(j*,c¢) — Rogue couple for S.
So S is not a stable pairing. Contradiction. O

Notes: S - stable. (j*,c¢*) € S. But (j*, ¢) is rogue couple!
Used Well-Ordering principle.

15/19

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T — pairing produced by JPR.

S — worse stable pairing for candidate c.

In T, (c,j) is pair.

In S, (c,j*) is pair.

c prefers j to j*.

T is job optimal, so j prefers c to its partner in S.

(c,j) is Rogue couple for S

S is not stable.

Contradiction. O

16/19

Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side
proposes.

Jobs Propose = job optimal.

Candidates propose. = optimal for candidates.

17/19

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....
..until 1990’s...Resident optimal.
Another variation: couples.

18/19

Takeaways.

Analysis of cool algorithm with interesting goal: stability.
“Economic”: different utilities.

Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.
Induction over steps of algorithm.

Proofs carefully use definition:
Stability:
Improvement Lemma plus every day the job gets to choose.
Optimality proof:
Job Optimality:
contradiction of the existence of a better stable pairing.
that is, no rogue couple by improvement, job choice, and well
ordering principle. ~ Candidate Pessimality:
contradiction plus job optimality implies better pairing.

19/19

