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Random Variables: Distribution and Expectation
Recall our setup of a probabilistic experiment as a procedure of drawing a sample from a set of possible
values, and assigning a probability for each possible outcome of the experiment. For example, if we toss a
fair coin n times, then there are 2n possible outcomes, each of which is equally likely and has probability 1

2n .

Now suppose we want to make a measurement in our experiment. For example, we can ask what is the
number of heads in n coin tosses; call this number X . Of course, X is not a fixed number, but it depends
on the actual sequence of coin flips that we obtain. For example, if n = 4 and we observe the outcome
ω = HT HH, then X = 3; whereas if we observe the outcome ω = HT HT , then X = 2. In this example
of n coin tosses, we only know that X is an integer between 0 and n, but we do not know what its exact
value is until we observe which outcome of n coin flips is realized and count how many heads there are.
Because every possible outcome is assigned a probability, the value X also carries with it a probability for
each possible value it can take. The table below lists all the possible values X can take in the example of
n = 4 coin tosses, along with their respective probabilities.

outcomes ω value of X (# heads) probability of occurring
T T T T 0 1/16

HT T T , T HT T , T T HT , T T T H 1 4/16
HHT T , HT HT , HT T H, T HHT , T HT H, T T HH 2 6/16

HHHT , HHT H, HT HH, T HHH 3 4/16
HHHH 4 1/16

Such a value X that depends on the outcome of the probabilistic experiment is called a random variable
(abbreviated r.v.). As we see from the example above, a random variable X typically does not have a
definitive value, but instead only has a probability distribution over the set of possible values X can take,
which is why it is called random. So the question “What is the number of heads in n coin tosses?” does
not exactly make sense because the answer X is a random variable. But the question “What is the typical
number of heads in n coin tosses?” makes sense — it is asking what is the average value of X (the number
of heads) if we repeat the experiment of tossing n coins multiple times. This average value is called the
expectation of X , and is one of the most useful summaries (also called statistics) of an experiment.

1 Random Variables
Before we formalize the above notions, let us consider another example to enforce our conceptual under-
standing of a random variable.

Example: Fixed Points of Permutations

Question: Suppose we collect the homeworks of n students, randomly shuffle them, and return them to the
students. How many students receive their own homework?
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Here the probability space consists of all n! permutations of the homeworks, each with equal probability 1
n! .

If we label the homeworks as 1,2, . . . ,n, then each sample point is a permutation π = (π1, . . . ,πn) where πi

is the homework that is returned to the ith student. We call i a fixed point of π if πi = i, i.e., if student i
receives their own homework.

As in the coin flipping case above, our question does not have a simple numerical answer (such as 4),
because the number depends on the particular permutation we choose (i.e., on the sample point). Let us call
the number of fixed points Xn, which is a random variable taking values in the set {0,1,2, . . . ,n}. (Actually
the value Xn = n−1 is not possible: why?)

Formal Definition of a Random Variable

We now formalize the concepts discussed above.

Definition 15.1 (Random Variable). A random variable X on a sample space Ω is a function X : Ω → R
that assigns to each sample point ω ∈ Ω a real number X(ω).

Until further notice, we will restrict our attention to random variables that are discrete, i.e., they take values
in a range that is finite or countably infinite. This means even though we define X to map Ω to R, the actual
set of values {X(ω) : ω ∈ Ω} that X takes is a discrete subset of R.

A random variable can be visualized in general by the picture in Figure 1.1 Note that the term “random
variable” is really something of a misnomer: it is a function so there is nothing random about it and it is
definitely not a variable! What is random is which sample point of the experiment is realized and hence the
value that the random variable maps the sample point to.

Sample
Space

Ω

R
a

Random variable
X

Sample space of
all permutations

123

132

213

231

312

321

R
0 1 2 3

X3 = # of fixed points

Figure 1: Visualization of how a random variable is defined on the sample space.

Exercise: By completing the lower picture in Figure 1, show that the only possible values for the r.v. X3 are
0, 1 and 3, and that their probabilities are 1

3 , 1
2 and 1

6 , respectively.

1The figures in this note are inspired by figures in Chapter 2 of Introduction to Probability by D. Bertsekas and J. Tsitsiklis.
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2 Probability Distribution
When we introduced the basic probability space in an earlier note, we defined two things:

1. The sample space Ω consisting of all the possible outcomes (sample points) of the experiment.

2. The probability of each of the sample points.

Analogously, there are two important things about any random variable:

1. The set of values that it can take.

2. The probabilities with which it takes on the values.

Since a random variable is defined on a probability space, we can calculate these probabilities given the
probabilities of the sample points. Let a be any number in the range of a random variable X . Then the set

{ω ∈ Ω : X(ω) = a}

is an event in the sample space (because it is a subset of Ω). We usually abbreviate this event to simply
“X = a”. Since X = a is an event, we can talk about its probability, P[X = a]. The collection of these
probabilities, for all possible values of a, is known as the distribution of the random variable X .

Definition 15.2 (Distribution). The distribution of a discrete random variable X is the collection of values
{(a,P[X = a]) : a ∈ A }, where A is the set of all possible values taken by X.

Thus, the distribution of the random variable X in our permutation example above is:

P[X = 0] =
1
3

; P[X = 1] =
1
2

; P[X = 3] =
1
6
.

If needed, we may also write P[X = a] = 0 for all other values of a.

The distribution of a random variable can be visualized as a bar diagram, shown in Figure 2. The x-axis
represents the values that the random variable can assume. The height of the bar at a value a is the probability
P[X = a]. Each of these probabilities can be computed by looking at the probability of the corresponding
event in the sample space.

Note that the collection of events X = a, for a ∈ A , satisfy two important properties:

• Any two events X = a1 and X = a2 with a1 ̸= a2 are disjoint.

• The union of all these events is equal to the entire sample space Ω.

The collection of events thus form a partition of the sample space (see Figure 2). Both properties follow
directly from the fact that X is a function defined on Ω, i.e., X assigns a unique value to each and every
possible sample point in Ω. So, when we sum up the probabilities of the events X = a, we are really
summing up the probabilities of all the sample points, giving us a total of exactly 1.
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Figure 2: Visualization of how the distribution of a random variable is defined.

Bernoulli Distribution

A simple yet very useful probability distribution is the Bernoulli distribution of a random variable which
takes value in {0,1}:

P[X = i] =

{
p, if i = 1,
1− p, if i = 0,

where 0 ≤ p ≤ 1. We say that X is distributed as a Bernoulli random variable with parameter p, and write

X ∼ Bernoulli(p) or x ∼ Ber(p).

Binomial Distribution

Let us return to our coin tossing example above, where we defined our random variable X to be the number
of heads. More formally, consider the random experiment consisting of n independent tosses of a biased
coin that shows H with probability p. Each sample point ω is a sequence of tosses, and X(ω) is defined to
be the number of heads in ω . For example, when n = 3, X(T HH) = 2.

To compute the distribution of X , we first enumerate the possible values that X can take. They are simply
0,1, . . . ,n. Then we compute the probability of each event X = i for i = 0,1, . . . ,n. The probability of the
event X = i is the sum of the probabilities of all the sample points with exactly i heads (for example, if
n = 3 and i = 2, there would be three such sample points {HHT,HT H,T HH}). Any such sample point has
probability pi(1− p)n−i, since the coin flips are independent. There are exactly

(n
i

)
of these sample points.

Hence,

P[X = i] =
(

n
i

)
pi(1− p)n−i, for i = 0,1, . . . ,n. (1)
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This distribution, called the binomial distribution, is one of the most important distributions in probability.
A random variable with this distribution is called a binomial random variable, and we write

X ∼ Bin(n, p),

where n denotes the number of trials and p the probability of success (observing an H in the example). An
example of a binomial distribution is shown in Figure 3. Notice that due to the properties of X mentioned
above, it must be the case that ∑

n
i=0P[X = i] = 1, which implies that ∑

n
i=0

(n
i

)
pi(1− p)n−i = 1. This provides

a probabilistic proof of the Binomial Theorem from an earlier note where we saw it combinatorially, for
a = p and b = 1− p.

1 2 3 4 5 6 7 8 9
a

P[X = a]

Binomial distribution
n = 9, p = 1

2

n
a

P[X = a]

Binomial distribution
n large, p small

Figure 3: The binomial distributions for two choices of (n, p).

Although we define the binomial distribution in terms of an experiment involving tossing coins, this distri-
bution is useful for modeling many real-world problems. Consider for example the error correction problem
studied earlier. Recall that we wanted to encode n packets into n+ k packets such that the recipient can
reconstruct the original n packets from any n packets received. But in practice, the number of packet losses
is random, so how do we choose k, the amount of redundancy? If we model each packet getting lost with
probability p and the losses are independent, then if we transmit n+ k packets, the number of packets re-
ceived is a random variable X with binomial distribution: X ∼ Bin(n+k,1− p) (we are tossing a coin n+k
times, and each coin turns out to be a head (packet received) with probability 1− p). So the probability of
successfully decoding the original data is:

P[X ≥ n] =
n+k

∑
i=n

P[X = i] =
n+k

∑
i=n

(
n+ k

i

)
(1− p)i pn+k−i.

Given fixed n and p, we can choose k such that this probability is no less than, say, 0.99.

Hypergeometric Distribution

Consider an urn containing N = B +W balls, where B balls are black and W are white. Suppose you
randomly sample n ≤ N balls from the urn with replacement, and let X denote the number of black balls
in your sample. What is the probability distribution of X? Since the probability of seeing a black ball is
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B/N for each draw, independently of all other draws, X follows the binomial distribution Bin(n, p), where
p = B/N.

What if you randomly sample n ≤ N balls from the urn without replacement? In this case, the probability of
seeing a black ball in the i-th draw depends on the colors of the i−1 balls already drawn; that is, unlike in
the case of sampling with replacement, the samples are not independent. The probability distribution of the
number Y of black balls in this setting can be found as follows.

Since all ways of drawing n balls are equally likely, we are in a uniform probability space Ω, so we can
compute probabilities using counting. Specifically, for any k = 0,1, . . . ,n, we have

P[Y = k] =
|Ek|
|Ω|

, (2)

where Ek ⊆ Ω is the set of outcomes that contain exactly k black balls. The total number of possible
outcomes is |Ω|=

(N
n

)
. The total number of outcomes containing exactly k black balls is

|Ek|=
(

B
k

)(
N −B
n− k

)
;

to see this, note that there are
(B

k

)
ways to choose the k black balls out of the B in the urn, and

(N−B
n−k

)
ways to

choose the remaining n−k balls out of the N−B white balls in the urn. Plugging these calculations into (2),
we conclude that

P[Y = k] =

(B
k

)(N−B
n−k

)(N
n

) ,

for k ∈ {0,1, . . . ,n}. (Note that
(m

j

)
= 0 if j >m, so P[Y = k] ̸= 0 only if max(0,n+B−N)≤ k ≤min(n,B).)

This probability distribution is called the hypergeometric distribution with parameters N,B,n, and we write

Y ∼ Hypergeometric(N,B,n).

3 Multiple Random Variables and Independence
Often one is interested in multiple random variables on the same sample space. Consider, for example,
the sample space of flipping three coins. One could define many random variables: for example a random
variable X indicating the number of heads, or a random variable Y indicating the number of tails, or a binary
random variable Z indicating whether the first toss is H or not. Note that for each sample point, any random
variable has a specific value: e.g., for ω = HT T , we have X(ω) = 1, Y (ω) = 2, and Z(ω) = 1.

The concept of a distribution can then be extended to probabilities for the combination of values for multiple
random variables.

Definition 15.3. The joint distribution of two discrete random variables X and Y is the collection of values
{((a,b),P[X = a,Y = b]) : a ∈ A , b ∈ B}, where A is the set of all possible values taken by X and B is
the set of all possible values taken by Y .

Given a joint distribution of X and Y , the distribution P[X = a] of X is called the marginal distribution of X ,
and can be found by summing over the values of Y . That is,

P[X = a] = ∑
b∈B

P[X = a,Y = b].
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The marginal distribution of Y is defined analogously.

A joint distribution over any set of random variables X1, . . . ,Xn (for example, Xi could be the value of the
i-th roll of a sequence of n die rolls) is P[X1 = a1, . . . ,Xn = an], where ai ∈ Ai and Ai is the set of possible
values for Xi. The marginal distribution of Xi can be obtained by summing over all the possible values of the
other variables.

Independence for random variables is defined in an analogous fashion to independence for events:

Definition 15.4 (Independence). Random variables X and Y on the same probability space are said to
be independent if the events X = a and Y = b are independent for all values a,b. Equivalently, the joint
distribution of independent r.v.’s decomposes as

P[X = a,Y = b] = P[X = a]P[Y = b], ∀a,b.

Mutual independence of more than two r.v.’s is defined similarly.

A very important example of independent random variables are indicator random variables for independent
events. If Ii denotes the indicator r.v. for the i-th toss of a coin being H, then I1, . . . , In are mutually inde-
pendent random variables. This example motivates the commonly used phrase “independent and identically
distributed (i.i.d.) set of random variables.” In this example, {I1, . . . , In} is a set of i.i.d. indicator random
variables.

4 Expectation
The distribution of a r.v. contains all the information about the r.v. In most applications, however, the
complete distribution of a r.v. is very hard to calculate. For example, consider the homework permutation
example with n = 20. In principle, we would have to enumerate 20! ≈ 2.4× 1018 sample points, compute
the value of X at each one, and count the number of points at which X takes on each of its possible values
(though in practice we could streamline this calculation a bit)! Moreover, even when we can compute the
complete distribution of a r.v., it is often not very informative.

For these reasons, we seek to summarize the distribution into a more compact, convenient form that is also
easier to compute. The most widely used such form is the expectation (or mean or average) of the r.v.

Definition 15.5 (Expectation). The expectation of a discrete random variable X is defined as

E[X ] = ∑
a∈A

a×P[X = a], (3)

where the sum is over all possible values taken by the r.v.

Technical Note. Expectation is well defined provided that the sum on the right hand side of (3) is absolutely
convergent, i.e., ∑a∈A |a|×P[X = a] < ∞. There are discrete random variables for which expectations do
not exist, such as the r.v. X with distribution P[X = i] = 6

π2i2 for all positive integers i. (The reason for the

factor 6
π2 here is to make the probabilities sum to 1, since ∑

∞
i=1

1
i2 =

π2

6 .)

For our simpler permutation example with only 3 students, the expectation is

E[X ] =

(
0× 1

3

)
+

(
1× 1

2

)
+

(
3× 1

6

)
= 0+

1
2
+

1
2
= 1.

That is, the expected number of fixed points in a permutation of three items is exactly 1.

CS 70, Spring 2024, Note 15 7



The expectation can be seen in some sense as a “typical” value of the r.v. (though note that E[X ] may not
actually be a value that X can take). The question of how typical the expectation is for a given r.v. is a very
important one that we shall return to in a later lecture.

Here is a physical interpretation of the expectation of a random variable: imagine carving out a wooden
cutout figure of the probability distribution as in Figure 4. Then the expected value of the distribution is the
balance point (directly below the center of gravity) of this object.

Figure 4: Physical interpretation of expected value as the balance point.

4.1 Examples
1. Single die. Throw a fair die once and let X be the number that comes up. Then X takes on values

1,2, . . . ,6 each with probability 1
6 , so

E[X ] =
1
6
(1+2+3+4+5+6) =

21
6

=
7
2
.

Note that X never actually takes on its expected value 7
2 .

2. Two dice. Throw two fair dice and let X be the sum of their scores. Then the distribution of X is

a 2 3 4 5 6 7 8 9 10 11 12
P[X = a] 1

36
1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

The expectation is therefore

E[X ] =

(
2× 1

36

)
+

(
3× 1

18

)
+

(
4× 1

12

)
+ · · ·+

(
12× 1

36

)
= 7.

3. Roulette. A roulette wheel is spun (recall that a roulette wheel has 38 slots: the numbers 1,2, . . . ,36,
half of which are red and half black, plus 0 and 00, which are green). You bet $1 on Black. If a black
number comes up, you receive your stake plus $1; otherwise you lose your stake. Let X be your net
winnings in one game. Then X can take on the values +1 and −1, and P[X = 1] = 18

38 , P[X =−1] = 20
38 .

Thus,

E[X ] =

(
1× 18

38

)
+

(
−1× 20

38

)
=− 1

19
;

i.e., you expect to lose about a nickel per game. Notice how the zeros tip the balance in favor of the
casino!
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4.2 Linearity of Expectation
So far, we have computed expectations by brute force: i.e., we have written down the whole distribution and
then added up the contributions for all possible values of the r.v. The real power of expectations is that in
many real-life examples they can be computed much more easily using a simple shortcut. The shortcut is
the following:

Theorem 15.1. For any two random variables X and Y on the same probability space, we have

E[X +Y ] = E[X ]+E[Y ].

Also, for any constant c, we have
E[cX ] = cE[X ].

Proof. We first rewrite the definition of expectation in a more convenient form. Recall from Definition 15.5
that

E[X ] = ∑
a∈A

a×P[X = a].

Consider a particular term a×P[X = a] in the above sum. Notice that P[X = a], by definition, is the sum
of P[ω] over those sample points ω for which X(ω) = a. Furthermore, we know that every sample point
ω ∈ Ω is in exactly one of these events X = a. This means we can write out the above definition in a more
long-winded form as

E[X ] = ∑
ω∈Ω

X(ω)×P[ω]. (4)

This equivalent definition of expectation will make the present proof much easier (though it is usually less
convenient for actual calculations). Applying (4) to E[X +Y ] gives:

E[X +Y ] = ∑
ω∈Ω

(X +Y )(ω)×P[ω]

= ∑
ω∈Ω

(X(ω)+Y (ω))×P[ω]

= ∑
ω∈Ω

(X(ω)×P[ω])+ ∑
ω∈Ω

(Y (ω)×P[ω])

= E[X ]+E[Y ]

In the last step, we used (4) twice.

This completes the proof of the first equality. The proof of the second equality is much simpler and is left
as an exercise.

Theorem 15.1 is very powerful: it says that the expectation of a sum of r.v.’s is the sum of their expecta-
tions, with no assumptions about the r.v.’s. We can use Theorem 15.1 to conclude things like E[3X −5Y ] =
3E[X ]−5E[Y ], regardless of whether or not X and Y are independent. This important property is known as
linearity of expectation.

Important caveat: Theorem 15.1 does not say that E[XY ] = E[X ]E[Y ], or that E
[ 1

X

]
= 1

E[X ] , etc. These
claims are not true in general. It is only sums and differences and constant multiples of random variables
that behave so nicely.
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4.3 Applications of Linearity of Expectation
Now let us see some examples of Theorem 15.1 in action.

1. Two dice again. Here is a much less painful way of computing E[X ], where X is the sum of the scores
of the two dice. Note that X = Y1 +Y2, where Yi is the score on die i. We know from example 1 in
Section 4.1 that E[Y1] = E[Y2] =

7
2 . So, by Theorem 15.1, we have E[X ] = E[Y1]+E[Y2] = 7.

2. More roulette. Suppose we play the roulette game mentioned in Section 4.1 n ≥ 1 times. Let Xn

be our expected net winnings. Then Xn = Y1 +Y2 + · · ·+Yn, where Yi is our net winnings in the
ith play. We know from earlier that E[Yi] = − 1

19 for each i. Therefore, by Theorem 15.1, E[Xn] =

E[Y1]+E[Y2]+ · · ·+E[Yn] =− n
19 . For n = 1000, E[Xn] =−1000

19 ≈ −53, so if you play 1000 games,
you expect to lose about $53.

3. Fixed points of permutations. Let us return to the homework permutation example with an arbitrary
number n of students. Let Xn denote the number of students who receive their own homework after
shuffling (or equivalently, the number of fixed points). To take advantage of Theorem 15.1, we need
to write Xn as a sum of simpler r.v.’s. Since Xn counts the number of times something happens, we can
write it as a sum using the following useful trick:

Xn = I1 + I2 + · · ·+ In, where Ii =

{
1, if student i gets their own homework,
0, otherwise.

(5)

[You should think about this equation for a moment. Remember that all the Ii’s are random variables.
What does an equation involving random variables mean? What we mean is that, at every sample
point ω , we have Xn(ω) = I1(ω)+ I2(ω)+ · · ·+ In(ω). Why is this true?]

A Bernoulli random variable such as Ii is called an indicator random variable of the corresponding
event (in this case, the event that student i gets their own homework). For indicator r.v.’s, the expecta-
tion is particularly easy to calculate. Specifically,

E[Ii] = (0×P[Ii = 0])+(1×P[Ii = 1]) = P[Ii = 1].

In our case, we have

P[Ii = 1] = P[student i gets their own homework] =
1
n
.

We can now apply Theorem 15.1 to (5), yielding

E[Xn] = E[I1]+E[I2]+ · · ·+E[In] = n× 1
n
= 1.

So, we see that the expected number of students who get their own homeworks in a class of size n
is 1. That is, the expected number of fixed points in a random permutation of n items is always 1,
regardless of n!

4. Coin tosses. Toss a fair coin n ≥ 1 times. Let the r.v. Xn be the number of heads observed. As in the
previous example, to take advantage of Theorem 15.1 we write

Xn = I1 + I2 + · · ·+ In,
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where Ii is the indicator r.v. of the event that the ith toss is H. Since the coin is fair, we have

E[Ii] = P[Ii = 1] = P[ith toss is H] =
1
2
.

Using Theorem 15.1, we therefore get

E[Xn] =
n

∑
i=1

1
2
=

n
2
.

More generally, in n tosses of a biased coin that comes up H with probability p, E[Xn] = np. (Check
this!) So the expectation of a binomial r.v. X ∼ Bin(n, p) is equal to np. Note that it would have
been much messier (though possible) to reach the same conclusion by computing this directly from
the definition of expectation in (3) and the distribution of a binomial r.v. in (1).

5. Balls and bins. Throw m balls into n bins. Let the r.v. X be the number of balls that land in the first
bin. Then X behaves exactly like the number of heads in m tosses of a biased coin with P[H] = 1

n
(why?). So, from the previous example, we get E[X ] = m

n . In the special case m = n, the expected
number of balls in any bin is 1. If we wanted to compute this directly from the distribution of X , we
would get into a messy calculation involving binomial coefficients.

Here is another example on the same sample space. Let the r.v. Yn be the number of empty bins.
The distribution of Yn is horrible to contemplate: to get a feel for this, you might like to write it
down for m = n = 3 (i.e., 3 balls, 3 bins). However, computing the expectation E[Yn] is easy using
Theorem 15.1. As in the previous two examples, we write

Yn = I1 + I2 + · · ·+ In, (6)

where Ii is the indicator r.v. of the event “bin i is empty”. The expectation of Ii is easy to find:

E[Ii] = P[Ii = 1] = P[bin i is empty] =
(

1− 1
n

)m

,

as discussed earlier. Applying Theorem 15.1 to (6), we therefore obtain

E[Yn] =
n

∑
i=1

E[Ii] = n
(

1− 1
n

)m

,

a simple formula, quite easily derived. Let us see how it behaves in the special case m = n (same
number of balls as bins). In this case we get E[Yn] = n

(
1− 1

n

)n. Now the quantity
(
1− 1

n

)n can be
approximated (for large enough values of n) by the number 1

e .2 So we see that, for large n,

E[Yn]≈
n
e
≈ 0.368n.

The bottom line is that, if we throw (say) 1000 balls into 1000 bins, the expected number of empty
bins is about 368.

2More generally, it is a standard fact that for any constant c,

(1+ c
n )

n → ec as n → ∞.

We just used this fact in the special case c =−1. The approximation is actually very good even for quite small values of n. (Try it
yourself!) E.g., for n = 20 we already get (1− 1

n )
n ≈ 0.358, which is very close to 1

e ≈ 0.368. The approximation gets better and
better for larger n.
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