
CS70 Discrete Mathematics and Probability Theory, Fall 2018

Final Exam 8:00-11:00am, 14 December
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SIGN Your Name: Your SID Number:

Your Exam Room:

Name of Person Sitting on Your Left:

Name of Person Sitting on Your Right:

Name of Person Sitting in Front of You:

Name of Person Sitting Behind You:

Instructions:

(a) As soon as the exam starts, please write your student ID in the space provided at the top of every
page! (We will remove the staple when scanning your exam.)

(b) There are 9 double-sided sheets (18 numbered pages) on the exam. Notify a proctor immediately if a
sheet is missing.

(c) We will not grade anything outside of the space provided for a question (i.e., either a designated box
if it is provided, or otherwise the white space immediately below the question). Be sure to write your
full answer in the box or space provided! Scratch paper is provided on request; however, please
bear in mind that nothing you write on scratch paper will be graded!

(d) The questions vary in difficulty, so if you get stuck on any question it may help to leave it and return
to it later.

(e) On questions 1-2: You must give the answer in the format requested (e.g., True/False, an expression, a
statement.) An expression may simply be a number or an expression with a relevant variable in it. For
short answer questions, correct, clearly identified answers will receive full credit with no justification.
Incorrect answers may receive partial credit.

(f) On questions 3-8, you should give arguments, proofs or clear descriptions if requested. If there is a
box you must use it for your answer.

(g) You may consult three two-sided “cheat sheets” of notes. Apart from that, you may not look at any
other materials. Calculators, phones, computers, and other electronic devices are NOT permitted.

(h) You may, without proof, use theorems and lemmas that were proven in the notes and/or in lecture.

(i) You have 3 hours: there are 8 questions on this exam worth a total of 190 points.
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1. True/False [No justification; answer by shading the correct bubble. Points per answer as indicated; total of
39 points. No penalty for incorrect answers.]

(a) Zero or more of the following are valid logical equivalences, for arbitrary propositions P and Q.
Indicate which by shading the appropriate circles.

YES NO

~ n (P ⇒ ¬Q) ≡ (Q ⇒ ¬P ) 1pt

n ~ (P ⇒ Q) ≡ (P ∨ ¬Q) 1pt

~ n ¬(¬P ∨Q) ≡ (P ∧ ¬Q) 1pt

n ~ ((P ⇒ Q) ∧ (Q ⇒ P )) ≡ ((P ∧ ¬Q) ∨ (¬P ∧Q)) 1pt

~ n ¬(P ∨ (¬P ∧Q)) ≡ (¬P ∧ ¬Q) 1pt

(b) Define the following predicates involving the variables x, y over the universe of cats.

• G(x): x has green eyes
• B(x): x has a bushy tail
• F (x, y): x is fatter than y

Consider the following statement:

“Every cat with green eyes is fatter than at least one cat that has a bushy tail
but doesn’t have green eyes.”

Which (if any) of the following expressions are accurate translations of this statement? Answer by
shading either the “Yes” or the “No” bubble for each expression. (There may be more than one “Yes”
answer.)

YES NO

n ~ ∀x∃y(G(x) ∧B(y) ∧ ¬G(y) ∧ F (x, y)) 1pt

n ~ ∃y∀x(¬G(y) ∧B(y) ∧ F (y, x)) 1pt

n ~ ∀x∀y(G(x) ⇒ (B(y) ∧ ¬G(y) ∧ F (x, y))) 1pt

~ n ∀x∃y(G(x) ⇒ (B(y) ∧ ¬G(y) ∧ F (x, y))) 1pt

[Q1 continued on next page]

Page 2



Your SID Number:

(c) Consider the following stable marriage instance, consisting of four men 1, 2, 3, 4 and four women A,
B, C, D:

Man Women
1 A B D C
2 D C B A
3 A C D B
4 B A C D

Woman Men
A 2 3 1 4
B 2 3 1 4
C 1 4 2 3
D 4 2 1 3

For each of the following statements about this instance, indicate whether the statement is True or
False by shading the corresponding bubble.

TRUE FALSE

n ~ The pairing (1,D), (2, C), (3, A), (4, B) is stable. 2pts

~ n The pairing (1, C), (2, B), (3, A), (4, D) is male pessimal. 2pts

n ~ There exists a stable pairing in which man 4 is paired with woman A. 2pts

~ n Woman A is paired with man 3 in every stable pairing. 2pts

(d) Consider the following graph.

Which of the following properties is/are true of this graph?

TRUE FALSE

~ n The graph is connected. 1pt

~ n The graph is bipartite. 1pt

~ n The graph is planar. 1pt

~ n The graph has a Hamiltonian cycle. 1pt

[Q1 continued on next page]
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(e) A connected graph G (with no self-loops or multiple edges between the same pair of vertices) has
seven vertices whose degrees are 3, 4, 4, 4, 5, 6, 6 respectively. Answer each of the following by
shading the appropriate bubble: “Yes”, “No” or “??” if the answer cannot be determined from the
given information.

YES NO ??

n ~ n Does G have an Eulerian tour? 1pt

~ n n Does G have an Eulerian walk? 1pt

n ~ n Is G planar? 1pt

(f) Classify each of the following functions f : R → R as (i) neither 1-1 nor onto; (ii) 1-1 but not onto;
(iii) onto but not 1-1; (iv) both 1-1 and onto (a bijection).

(i) (ii) (iii) (iv)

~ n n n f(x) = x2. 1pt

n n n ~ f(x) = x + 1. 1pt

n n n ~ f(x) = 1
x for x 6= 0, f(0) = 0. 1pt

n ~ n n f(x) = ex. 1pt

(g) Answer each of the following questions TRUE or FALSE by shading the appropriate bubble.

TRUE FALSE

~ n There are two distinct powers of 2 that are equal mod 97. 1pt

~ n For sets A,B, if A is uncountable and B is countable, then the difference A \B
is uncountable. 1pt

n ~ For a collection of countably infinite sets Ai, i ∈ N, the union
⋃

i∈N Ai is
uncountable. 1pt

n ~ If A is uncountable and B is finite and non-empty, then A×B is countable. 1pt

[Q1 continued on next page]
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(h) Answer each of the following questions TRUE or FALSE by shading the appropriate bubble.

TRUE FALSE

~ n For all events A1, . . . , An, we have P[
⋃n

i=1 Ai] ≤
∑n

i=1 P[Ai]. 1pt

n ~ For dependent random variables X, Y and constants a, b, it is possible that 1pt
E[aX + bY ] 6= aE[X] + bE[Y ].

n ~ E[XY ] = E[X]E[Y ] if and only if X and Y are independent. 1pt

n ~ Consider two random variables X and Y with ranges AX and AY , respectively. If 1pt
there exist a ∈ AX and b ∈ AY such that P[X = a, Y = b] = P[X = a]P[Y = b],
then X and Y are independent.

~ n Consider the standard Coupon Collector’s Problem with n coupon types, and let 1pt
Wn denote the total number of trials required to collect all n coupon types. Then,
limn→∞ E[Wn]/(n lnn) = 1.

~ n Suppose P (x) = Ax + B is a random polynomial where A and B are independent 1pt
standard normal random variables. Then P (x) has a root with probability 1.

~ n For all Markov chains {Xn, n ∈ N}with finite state space S and ∀m ∈ {0, 1, . . . , n}, 1pt
P[Xn = j | X0 = i] =

∑
k∈S P[Xn = j | Xm = k]× P[Xm = k | X0 = i].
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2. Short Answers [Answer is a single number or expression; write it in the box provided: anything outside
the box will not be graded; no justification necessary. 3 points per answer; total of 78 points. No penalty
for incorrect answers.]

(a) What is the inverse of the function f(x) = 3x− 2 over the reals? 3pts

f−1(y) = (y + 2)/3. [Every x ∈ R gets mapped to a unique y = 3x − 2 by f , and so solving
for x tells us that every y ∈ R gets uniquely mapped to f−1(y) = (y + 2)/3.]

(b) Compute gcd(323, 152). 3pts

19. [gcd(323, 152) = gcd(152, 19) = gcd(19, 0) = 19.]

(c) What is 37225 mod 113? [Note: 113 is prime.] 3pts

37. [37225 ≡ 372×112 · 37 ≡ 37 (mod 113) by Fermat’s Little Theorem.]

(d) Solve for x in the modular equation 5x− 7 = 0 (mod 11). 3pts

x ≡ −3 ≡ 8 (mod 11). [1 = 11 + (−2) · 5, and so 5−1 ≡ −2 (mod 11). Multiplying the en-
tire equation by −2 gives x + 14 ≡ 0 (mod 11).]

(e) Suppose Alice’s public RSA key is (N, e) = (143, 7). What is the value d that Alice needs in order to 3pts
decrypt messages sent to her? (Hint: Note that 143 = 11× 13.)

d = 103. [d ≡ e−1 (mod (p − 1)(q − 1)), and here p = 11, q = 13, so (p − 1)(q − 1) = 120.
Since 1 = 120− 17 · 7, we have 7−1 ≡ −17 ≡ 103 (mod 120).]

(f) Rex chooses a random polynomial P of degree at most k over GF(q) (for a prime q > k), by selecting
k + 1 coefficients independently and uniformly at random from {0, 1, . . . , q − 1}.

(i) What is the probability that Rex’s polynomial goes through the point (0, 0), i.e., that P (0) = 0? 3pts

1/q. [Each of the qk+1 polynomials of degree at most k is sampled with equal probability. Since
fixing the value 0 at x = 0 leaves k remaining points to determine a polynomial, there are qk

polynomials with P (0) = 0. The probability is the ratio qk/qk+1.]

(ii) What is the probability that Rex’s polynomial has exactly k distinct roots? 3pts(
q

k

)
(q − 1)/qk+1. [Since the total number of polynomials is qk+1, we just need to show that

the number of polynomials with exactly k distinct roots is
(
q
k

)
(q − 1). There are

(
q
k

)
possibilities

for choosing the roots, which determines the polynomial up to a constant factor; the constant fac-
tor can be chosen in q − 1 ways (since it cannot be 0). Alternatively, after choosing the zeros, we
can choose the value of the polynomial at one additional point, which can be done in q − 1 ways.
(Again 0 is not allowed.)]

[Q2 continued on next page]
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(g) Alice wants to share a secret (a number mod 7) among her four loyal companions in such a way 3pts
that any three of the companions can recover the secret, but no two of them can. All of them have
taken CS70 and agree to do polynomial secret sharing with the secret stored at P (0) for a suit-
able polynomial P over GF(7). Alice gives each of her companions one of the following points:
(1, 1), (2, 0), (3, 0), (4, 1). What is the secret?

3. [Alice’s polynomial P must have been of degree at most 2, and so we can use the first three
values to find the secret P (0) through Lagrange Interpolation: P (0) =

∑3
k=1 yk∆k(0) = ∆1(0). But

∆1(x) ≡ (x− 2)(x− 3)2−1 ≡ 4(x− 2)(x− 3) (mod 7), and so P (0) ≡ 6 · 4 ≡ 3 (mod 7).]

(h) Laurel wants to send a message consisting of 100 packets to Hardy over a noisy channel. Laurel 3pts
knows that up to 1

6 of the packets sent may be corrupted by the channel. Assuming Laurel uses the
Berlekamp-Welch encoding scheme, how many packets must he send to ensure that Hardy will be able
to recover the original message?

150. [We need to ensure that we have twice as many redundant packets as we have errors, i.e., the
number of packets m must satisfy m− 100 ≥ 2 · (m/6), or equivalently m ≥ 150.]

(i) We say that program P1 dominates program P2 if P1 halts on every input on which P2 halts. The 3pts
problem Dominates takes as input two programs, P1 and P2, and decides whether P1 dominates P2.
The following pseudo-code gives a reduction from the Halting Problem, Halt, to Dominates. Fill in
the blank to make the reduction behave correctly.

Test-Halt(P,x)
let P1 be a program that, on every input, runs P on x
let P2 be a program that, on every input, halts
if Test-Dominates(P1,P2) then return "yes" else return "no"

(j) Suppose there are k keys {w1, . . . , wk} and a hash table of size n. How many distinct hash functions 3pts
are there such that keys w1 and w2 do not get mapped to the same location of the hash table?

nk−1(n − 1). [There are n choices for w1, n − 1 choices for w2, and nk−2 choices to map the re-
maining k − 2 keys.]

(k) A 5-card poker hand is called a straight if its cards can be re-arranged to form a contiguous se- 3pts
quence, regardless of their suits, i.e., if the hand is of the form {A, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, . . . , or
{10, J,Q,K,A}. How many straight hands are there consisting of 3 black and 2 red cards?

10 ·
(

5
3

)
· 25. [There are 10 distinct sets of numeric values that can form a straight. Given such a

set of five numbers, there are
(
5
3

)
ways of choosing which ones are red and which ones are black, and

given the color of a card, there are two different suits that share this colour.]

[Q2 continued on next page]
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(l) Consider the complete graph Kn with n ≥ 3 vertices, and suppose that each edge is colored blue
with probability p and red with probability 1− p, independently of all other edges. Let ∆n denote the
number of completely blue triangles resulting from this random coloring.

(i) What is E[∆n]? 3pts(
n
3

)
p3. [There are

(
n
3

)
triangles in Kn. We can define an indicator variable IT for each triangle T

denoting the event that its edges are all colored blue. For each triangle T we have P[IT = 1] = p3

so by linearity of expectation we have E[∆n] =
(
n
3

)
p3.]

(ii) Use the union bound to find a lower bound on P[∆n = 0]. 3pts
1 −

(
n
3

)
p3. [Equivalently, we can find an upper bound on P[∆n > 0] = P[

⋃
T {IT = 1}] where

the union is over all triangles T . Applying the union bound gives us the upper bound
P[

⋃
T {IT = 1}] ≤

∑
T P[IT = 1] =

(
n
3

)
p3. Thus P[∆n = 0] = 1− P[∆n > 0] ≥ 1−

(
n
3

)
p3.]

(m) Let A and B denote two events such that A ⊂ B. Suppose P[A] = a and P[B] = b, and let IA and IB 3pts
denote the indicator random variables for A and B, respectively. Find Cov(IA, IB).
a(1− b). [We have Cov(IA, IB) = E[IAIB]−E[IA]E[IB]. Observe that since A ⊂ B, then IAIB = 1
exactly when IA = 1. Thus E[IAIB] = E[IA] = P[A] = a. Since E[IB] = P[B] = b, then
Cov(IA, IB) = a− ab.]

(n) Consider an urn with 3 blue balls and 1 red ball, and suppose you sample one ball at a time with
replacement. Let X be the number of draws required until both of the colors, blue and red, have been
observed at least once.

(i) What is P[X = n | The first ball drawn is red], for n ≥ 2? 3pts
(1
4)n−2 3

4 . [Given that we first drew a red ball, if we take n draws to observe both colors, then
draws 2 to n− 1 must also have been red and draw n must be blue. This occurs with probability
(1
4)n−2 3

4 . (Observe that we are following a geometric distribution)]

(ii) What is P[X = n], for n ≥ 2? 3pts
3+3n−1

4n . [Let R denote the event that the first ball drawn is red and B denote the event that the
first ball drawn is blue. Using a similar argument as in (i) we have P[X = n | B] = (3

4)n−2 1
4 .

Thus

P[X = n] = P[X = n | R] · P[R] + P[X = n | B] · P[B] (1)

=
(

1
4

)n−1 3
4

+
(

3
4

)n−1 1
4

=
3 + 3n−1

4n
. ] (2)

[Q2 continued on next page]
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(o) Suppose X ∼ Exp(λ) and Y ∼ Exp(µ) are independent random variables, where λ, µ > 0. What is 3pts
P[min{X, Y } ≤ t], where t is a positive constant?
1 − e−t(λ+µ). [P[min{X, Y } ≤ t] = 1 − P[min{X, Y } > t] = 1 − P[X > t]P[Y > t] because X
and Y are independent. Thus our answer is 1− e−tλe−tµ = 1− e−t(λ+µ)]

(p) Suppose X ∼ Exp(λ) and Y ∼ Exp(µ) are independent random variables, where λ, µ > 0. What is 3pts
the conditional probability P[X < Y | min{X, Y } > t], where t is a positive constant?

λ
λ+µ . [By the memoryless property of exponential random variables, P[X < Y | min{X, Y } > t] =
P[X < Y ], and from Problem 3 of Discussion 12A, we know P[X < Y ] = λ

λ+µ .]

(q) Suppose X ∼ Normal(1, 2) and Y ∼ Normal(2, 1) are independent random variables. What is the 3pts
distribution of 2X − Y + 1? State its name and specify its parameter(s).
Normal(1, 9). [Linear combinations of Normal random variables and constants are also distributed
normally. Let Z = 2X − Y + 1. Then E[Z] = 2E[X] − E[Y ] + 1 = 2 − 2 + 1 = 1. Also,
Var[Z] = Var[2X − Y ] = Var[2X] + Var[Y ] = 4Var[X] + 1 = 9.]

(r) Suppose A and B are independent Normal(1, 1) random variables. Find P[2A + B ≥ 4] in terms of 3pts
the cumulative distribution function (c.d.f.) Φ of the standard normal distribution.

1−Φ
(

1√
5

)
. [Let Z = 2A+B. Then E[Z] = 2E[A]+E[B] = 3 and Var[Z] = 4Var[A]+Var[B] = 5

so Z is a Normal(3, 5) random variable, and hence Z−3√
5

is standard normal. Then

P[Z ≥ 4] = P[Z − 3 ≥ 1] = P
[
Z − 3√

5
≥ 1√

5

]
= 1− Φ

(
1√
5

)
. ]

(s) Consider randomly dropping a circular coin of radius 1 cm onto a large rectangular grid where hori- 3pts
zontal lines are 3 cm apart, while vertical lines are 4 cm apart. What is the probability that the coin
intersects at least one grid line?
5
6 . [We compute the probability that the coin intersects no grid lines. Consider the 3 by 4 rectangle
between two adjacent horizontal lines and two adjacent vertical lines. The center of the coin must be at
least 1 cm away from either vertical line and either horizontal line so there is a 1 by 2 rectangular area
that it may land in. Thus the probability that there are zero intersections is 1·2

3·4 = 1
6 so the probability

there is at least one intersection is 1− 1
6 = 5

6 .]

[Q2 continued on next page]
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(t) Let X be a continuous random variable with probability density function (p.d.f.) f(x) = 2x if 0 ≤
x ≤ 1, and f(x) = 0 otherwise. Find Var[X2]. 3pts
1
12 . [We have Var[X2] = E[X4]− E[X2]2. Note that

E[X4] =
∫ 1

0
x4f(x)dx =

∫ 1

0
2x5dx =

1
3

and

E[X2] =
∫ 1

0
x2f(x)dx =

∫ 1

0
2x3dx =

1
2

so Var[X2] = 1
3 −

1
4 = 1

12 .]

(u) Find a and b such that the following function F is a valid c.d.f. for a continuous random variable, and 3pts
find the corresponding p.d.f. f(x):

F (x) =


0, for x ≤ 0,

a(1− x)2 + b, for 0 < x < 1,

1, for x ≥ 1.

a = −1; b = 1; and f(x) = 2(1 − x) for x ∈ [0, 1] (or (0, 1], [0, 1), (0, 1)) and f(x) = 0 elsewhere.
[Since the c.d.f. is continuous, setting x = 0 and x = 1 in the expression a(1 − x)2 + b should give
the values F (0) = 0 and F (1) = 1, respectively. Thus a + b = 0 and b = 1. It follows that a = −1.
Since f(x) = F ′(x), then f(x) = 2(1 − x) for x ∈ [0, 1] (or (0, 1], [0, 1), (0, 1)) and f(x) = 0 for
other values of x.]

(v) Consider a two-state Markov chain with transition probability matrix P =
[
1− a a

b 1− b

]
, where 3pts

0 < a, b < 1. Find the corresponding stationary distribution π = (π1, π2).
(π1, π2) = ( b

a+b ,
a

a+b). [We have π1 + π2 = 1 because (π1, π2) is a distribution. From the balance
equations we have π1 = (1 − a) · π1 + b · π2 so aπ1 = bπ2. Thus (1 + a

b )π1 = 1 so (π1, π2) =
( b

a+b ,
a

a+b).]

(w) There are two candy jars labeled A and B. Each day, you choose jar A with probability p and jar B with
probability 1−p, and eat one of the candies from the chosen jar. Let α(i, j) denote the probability that
jar A becomes empty before jar B, given that jar A currently contains i candies while jar B contains j
candies. For i, j > 0, write down a recursive formula satisfied by α(i, j): 2pts
α(i, j) = p · α(i − 1, j) + (1 − p) · α(i, j − 1). [With probability p we pick a candy from jar A and
enter a state with i − 1 jar A candies and j jar B candies. With probability 1 − p we pick from jar B
and have i jar A candies and j − 1 jar B candies.]

Write down the boundary conditions (base cases) for your recursion: 1pt
α(0, j) = 1 and α(i, 0) = 0 for i, j > 0. [The recursion tells us how to deal with i, j > 0 so we need
to handle the case when one of them is 0. If there are 0 jar A candies, then jar A has become empty
before jar B. If there are 0 jar B candies, then jar A has failed to become empty first.]
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3. Trees [All parts to be justified. Total of 10 pts.]

(a) Prove by strong induction on the number of vertices that the vertices of any tree can be colored with 5pts
two colors so that no two adjacent vertices get the same color. [Hint: Remove an arbitrary edge from
the tree.]

We use strong induction on the number of vertices in tree T . For the base case, T has only a single
vertex and can obviously be colored with a single color.

For the induction hypothesis, we assume for all 1 ≤ k < n that a tree with k vertices can be two-
colored.

For the induction step, let T be an arbitrary tree with n vertices. Remove any edge e = (v1, v2)
from T . Since T is a tree, removing e will disconnect it into two subtrees, T1 and T2, each with fewer
than n vertices. We can choose the labels of these trees so that v1 ∈ T1 and v2 ∈ T2.

By the (strong) induction hypothesis, we can two-color T1 and T2 separately (using the same set
of two colors). Now suppose we add the edge e back in to re-connect the colored trees T1 and T2 . If
v1, v2 were assigned opposite colors, we have a valid two-coloring of T and we are done.

Otherwise, v1 and v2 are adjacent vertices with the same color, which is not permitted. To deal with
this case, before adding back edge e we can first “flip” the two colors on T1 so that now v1, v2 have
opposite colors. Adding edge e again leaves us with a valid two-coloring of T .

Alternative proof: The following induction argument also works (but is not as elegant because it uses
the non-trivial fact that any tree has at least one leaf). The base case and induction hypothesis are as
above. For the inductive step, let T be an arbitrary tree with n vertices. Using the fact that T has a leaf
vertex v, remove the single edge (u, v) connecting v to T , leaving a tree T ′ with n− 1 vertices. Now,
by the induction hypothesis, we can color T ′ with two colors. Finally, color v with the opposite color
to that of u and add back the edge (u, v). This gives us a valid two-coloring of the whole of T .

(b) Let T be a tree with n vertices. For 1 ≤ i ≤ n− 1, let ni denote the number of vertices in T of degree 2pts
exactly i. Show that

∑n−1
i=1 ini = 2(n − 1). [Reminder: You may use without proof any results from

notes or lecture, provided that they are clearly stated.]

The left hand side is another way to write
∑

v∈V deg(v), since deg(v) = i will appear exactly ni times
in

∑
v∈V deg(v). Note that the maximum degree of a vertex in a n-vertex tree is (n− 1), while a tree

is connected so all vertices must have degree at least 1; this explains why we only need to consider
1 ≤ i ≤ (n − 1). The right hand side is 2|E|, as T is a tree with n vertices, and thus has (n − 1)
edges. Rewriting the statement, we have

∑
v∈V deg(v) = 2|E|, which was proven in class. (It’s also

easy to see: summing the degrees of all vertices counts each edge exactly twice—once for each of its
two endpoints.)

(c) Suppose n ≥ 6 is even and suppose that T has n
2 + 2 vertices of degree 1. Prove using part (b) that T 3pts

must have at least one vertex of degree at least 4.

Part (b) tells us
∑n−1

i=1 ini = 2(n−1). Since n
2 +2 vertices have degree 1, we can apply this information

to conclude
[∑n−1

i=2 ini

]
+ 1 ·

(
n
2 + 2

)
= 2(n− 1). Simplifying further, we have

∑n−1
i=2 ini = 3n

2 − 4.

Now, assume for contradiction that T has no vertices of degree at least 4, so all of its remaining vertices
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must have degree 2 or 3. The largest possible value for
∑n−1

i=2 ini is therefore 3 ·
(

n
2 − 2

)
= 3n

2 − 6,
corresponding to all remaining

(
n
2 − 2

)
vertices having degree 3. However, by the previous paragraph,

the sum is 3n
2 − 4, which is strictly greater. Hence we get a contradiction, so our assumption that T

has no vertices of degree at least 4 must be false.
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4. Wilson’s Theorem [All parts to be justified. Total of 12 pts.]

This question leads you through a proof of Wilson’s Theorem, which says the following:

Theorem: A natural number n > 1 is prime if and only if (n− 1)! ≡ −1 (mod n).

(a) Assume first that n > 1 is not prime, and let 1 < q < n be a divisor of n. Show that if a number a ≡ b 3pts
(mod n) then also a ≡ b (mod q).
If a ≡ b (mod n), then a− b = nm for some integer m. Thus a− b = qkm for some integer k since
q is a divisor of n. We can conclude that a− b ≡ 0 (mod q), i.e., a ≡ b (mod q).

(b) Deduce from the previous part that, when n > 1 is not prime, (n− 1)! 6≡ −1 (mod n). 3pts
If n is not prime, then n has some divisor q with 1 < q < n. Assume for the sake of contradiction that
(n− 1)! ≡ −1 (mod n). Then, by part (a), (n− 1)! ≡ −1 (mod q). But since 1 < q < n, (n− 1)!
contains q as a factor, and hence (n− 1)! ≡ 0 (mod q), a contradiction. So our proof is complete.

(c) Now assume that n > 1 is prime. Let x be any number in the range 1 ≤ x ≤ n − 1. Show that the 3pts
only such x which are their own inverse (mod n) are x = 1 and x = n − 1 ≡ −1 (mod n). [Hint:
Think about polynomials!]
Solution 1: If x is its own inverse modulo n, then x2 ≡ 1 (mod n). To find all such x we want to find
the roots of x2 − 1 = 0 over GF (n). This is a degree 2 polynomial over a finite field (because n is
prime) so it has at most 2 distinct roots. Since x = 1 and x = −1 both satisfy the equation, then there
can be no other values that are their own inverse modulo n.
Solution 2: If x is its own inverse modulo n, then x2 ≡ 1 (mod n). Thus, there exists some integer k
for which x2 − 1 = kn so n divides x2 − 1 = (x− 1)(x + 1). Since n is prime, then n divides one of
x− 1 or x + 1 and the result follows.

(d) Deduce from the previous part that, when n > 1 is prime, (n− 1)! ≡ −1 (mod n). 3pts
We can write (n− 1)! = (n− 1) · (n− 2) · · · (2) · (1). By part (c), any integer m with 1 < m < n− 1
is not its own inverse modulo n. Thus, there exists some other integer m′ 6= m with 1 < m′ < n− 1
such that m ·m′ ≡ 1 (mod n). Since no two distinct elements share the same inverse, we can pair up
all the integers strictly between 1 and n− 1 and deduce that (n− 1)! ≡ (n− 1) · (1) ≡ −1 (mod n)
as desired.
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5. Partitions via Random Sampling [No justification necessary. Total of 13 points.]

There are two urns: Urn 1 has 10 blue and 6 red marbles, while Urn 2 has 7 blue and 9 red marbles. Alice,
Bob, and Carol decide to divide up the marbles among them using random sampling. They will first choose
one of the urns uniformly at random (u.a.r.), and then use the following scheme to sample from the same
chosen urn until it is empty: In each round of sampling, one person is chosen u.a.r., and that person will
sample a marble u.a.r. from the urn and keep the marble. Let BA, BB, BC respectively denote the number of
blue marbles that Alice, Bob, and Carol have at the end; RA, RB, RC are similarly defined for red marbles.

Whenever possible, express all combinatorial factors in terms of binomial coefficients.

(a) Find P[BA = 3, BB = 5, BC = 2 | Urn 1 was chosen]. 3pts(
10
3

)(
7
5

)
1

310
. [Each blue marble is equally likely to be drawn by Alice, Bob or Carol. So, given that

Urn 1 was chosen, each particular assignment (i1, . . . , i10), where ik ∈ {Alice, Bob, Carol} denotes
the person who gets the kth blue marble, has probability (1/3)10. There are

(
10
3

)(
7
3

)
such assignments

that result in 3 blue marbles for Alice, 5 for Bob, and 2 for Carol.]

(b) Find P[BA = 4, RA = 2 | Urn 1 was chosen]. 3pts(
10
4

)(
6
2

)
210

316
. [Conditioned on Urn 1 being chosen, BA and RA are independent, and so

P(BA = 4, RA = 2|Urn 1 was chosen) = P(BA = 4|Urn 1 was chosen)P(RA = 2|Urn 1 was chosen).

Each factor on the right hand side is a binomial probability: P(BA = 4 | Urn 1 was chosen) =(
10
4

) (
1
3

)4 (
2
3

)6 and P(RA = 2 | Urn 1 was chosen) =
(
6
2

) (
1
3

)2 (
2
3

)4, which follow from the fact that
each marble is equally likely to be drawn by Alice, Bob or Carol, so the probability that Alice gets
(respectively, does not get) a given marble is 1/3 (respectively, 2/3). ]

(c) Let E denote the event that 3 blue and 2 red marbles are observed in the first five rounds of sampling. 4pts
Find P[E | Urn 1 was chosen] and P[Urn 1 was chosen | E].

P(E | Urn 1 was chosen) =

(
10
3

)(
6
2

)(
16
5

) =

(
5
2

)(
11
4

)(
16
6

) =
(

5
2

)
10 · 9 · 8 · 6 · 5

16 · 15 · 14 · 13 · 12
. [To see the first of

these expressions, note that there are
(
16
5

)
ways of choosing a set of five marbles from Urn 1, each of

which is equally likely;
(
10
3

)(
6
2

)
of those contain exactly 3 blue and 2 red marbles. To see the second

expression, note that among all orderings of the 16 marbles in Urn 1, there are
(
16
6

)
ways of picking

the positions of the red marbles, all equally likely; of these,
(
5
2

)(
11
4

)
have 2 red marbles in the first

five positions (and 4 in the remaining 11 positions); to see this last claim, note that once the positions
of the red marbles are fixed, those of the blue marbles are also determined. To see the third and final
expression, note that there are

(
5
2

)
red-blue sequences consisting of 3 blue and 2 red marbles, each of

which has probability given by the stated fraction: to see this, note that the denominator is the total
number of ordered sequences of five marbles, while the numerator is the number of such sequences
that correspond to a given red-blue sequence.]

P(Urn 1 was chosen | E) =

(
10
3

)(
6
2

)(
10
3

)(
6
2

)
+

(
7
3

)(
9
2

) =
10
17

. [Let Ui denote the event that Urn i was chosen.

Then, by Bayes’ Rule, we have P(U1 | E) = P(E|U1)P(U1)
P(E|U1)P(U1)+P(E|U2)P(U2) . The answer follows from

plugging in P(U1) = P(U2) = 1/2, P(E | U1) from above, and a similar result for P(E | U2).]

Page 14



Your SID Number:

(d) What is the total number of distinct partitions of the marbles among Alice, Bob, and Carol, given that 3pts
Urn 1 was chosen? [Remark: Marbles of the same color are indistinguishable, but marbles of different
colors are distinguishable.](

12
2

)(
8
2

)
. [Partitioning only the blue marbles is a stars and bars problem with nB = 10 stars and

kB = 2 bars. Similarly, distributing only the red marbles is a stars and bars problems with nR = 6
stars, kR = 2 bars. Since both choices of partitions are made independently of each other, the total
number of partitions is

(
nB+kB

kB

)
×

(
nR+kR

kR

)
.]
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6. Probability Bounds and Limits [No partial credit for ??-??. Total of 13 points.]

Consider i.i.d. random variables X1, X2, . . . with probability distribution P[Xi = 2] = 1
4 , P[Xi = 4] = 1

2 ,
and P[Xi = 6] = 1

4 for all i = 1, 2, . . .. Let Sn = X1 + X2 + · · ·+ Xn.

(a) Find E[Sn] and Var[Sn]. 3pts
We have E[Xi] = 2 · 1

4 + 4 · 1
2 + 6 · 1

4 = 4, so E[Sn] = 4n by linearity of expectation. We have
Var[Xi] = (2− 4)2 · 1

4 + (6− 4)2 · 1
4 = 2, so Var[Sn] = 2n by independence of X1, . . . , Xn.

(b) Markov’s inequality implies which of the following? Shade only one bubble. 2pts} P[Sn < 5n] ≥ 1
5l P[Sn < 5n] ≤ 1
5l P[Sn < 5n] ≥ 4
5l P[Sn < 5n] ≤ 4
5l None of the above.

Markov’s Inequality implies P[Sn ≥ 5n] ≤ E[Sn]
5n = 4

5 , so P[Sn < 5n] = 1−P[Sn ≥ 5n] ≥ 1− 4
5 = 1

5 .

(c) Chebyshev’s inequality implies which of the following? Shade only one bubble. 3ptsl P[Sn < 5n] ≥ 1
nl P[Sn < 5n] ≤ 1
n} P[Sn < 5n] ≥ 1− 1

nl P[Sn < 5n] ≤ 1− 1
nl None of the above.

Chebyshev’s inequality tells us that P[|Sn − 4n| ≥ n] ≤ 2n
n2 = 2

n . Observe that Xi is symmetrically
distributed around 4, which means Sn is symmetrically distributed around 4n. Thus P[Sn ≥ 5n] =
P[Sn ≤ 3n]. Since P[|Sn − 4n| ≥ n] = P[Sn ≥ 5n] + P[Sn ≤ 3n] = 2P[Sn ≥ 5n], we have
P[Sn ≥ 5n] ≤ 1

n . It then follows that P[Sn < 5n] ≥ 1− 1
n .

(d) Let Φ denote the c.d.f. of the standard normal distribution. For large n, which of the following is true? 2pts
Shade only one bubble.l P[Sn ≥ 4n + εn] ≈ Φ(

√
n
2 ε)} P[Sn ≥ 4n + εn] ≈ 1− Φ(
√

n
2 ε)l P[Sn ≥ 4n + εn] ≈ Φ( ε

2)l P[Sn ≥ 4n + εn] ≈ 1− Φ( ε
2)l None of the above.

By the Central Limit Theorem, for large n we have P [Sn ≥ 4n + εn] = P
[

Sn−4n√
2n

≥ ε
√

n
2

]
≈ 1 −

Φ(
√

n
2 ε).

(e) For δ > 0, lim
n→∞

P[Sn ≤ (4− δ)n] = 0 . Justify your answer below. 3pts

This result can be shown in several ways:

1. By the Law of Large Numbers, lim
n→∞

P[Sn ≤ (4− δ)n] = lim
n→∞

P
[
Sn

n
− 4 ≤ −δ

]
= 0.

2. A related approach is to use Chebyshev’s inequality, which implies

P(Sn − 4n ≤ −δn) ≤ P(|Sn − 4n| ≥ δn) ≤ Var[Sn]
δ2n2

=
2n

δ2n2
=

2
δ2n

.

The upper bound on the right hand side approaches 0 as n →∞, so lim
n→∞

P[Sn ≤ (4− δ)n] = 0.
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3. Alternatively, by the Central Limit Theorem, we have P [Sn ≤ 4n− δn] = P
[

Sn−4n√
2n

≤ −
√

n
2 δ

]
≈

Φ(−
√

n
2 δ) for large n, so lim

n→∞
P[Sn ≤ (4− δ)n] = lim

n→∞
Φ

(
−

√
n

2
δ

)
= 0.
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7. Poisson Distribution [Justification required where stated. Total of 12 points.]

Assume that the number of data blocks received at a data storage center per month follows a Poisson dis-
tribution with rate λ > 0, and assume that these numbers over different months are mutually independent.
After each month of storage, each data block has probability p > 0 of getting corrupted, independently of
all other data blocks. Let X0 denote the number of new data blocks received this month, and, for n ∈ Z+,
let Xn denote the number of data blocks received n months ago that have so far not been corrupted.

(a) Prove that X1 ∼ Poisson[(1− p)λ]. 5pts
Note that this problem is essentially the same as the Poisson Question discussed in HKN Review
Session (see slides 31-32) and further detailed in followup discussions on Piazza.

We need to show that P(X1 = k) = e−λ1
λk

1

k!
for every k ∈ N, where λ1 = (1 − p)λ. Let R1 denote

the number of data blocks received one month ago. Then R1 ∼ Poisson(λ) and X1 | R1 = r ∼
Binomial(r, (1− p)). Hence, using the law of total probability, we obtain

P(X1 = k) =
∞∑

r=k

P(X1 = k | R1 = r)P(R1 = r)

=
∞∑

r=k

(
r

k

)
(1− p)kpr−ke−λ λr

r!
=

(1− p)kλk

k!
e−λ

∞∑
r=k

λr−k

(r − k)!
pr−k

=
[(1− p)λ]k

k!
e−λ

∞∑
j=0

(λp)j

j!
=

λk
1

k!
e−λeλp =

λk
1

k!
e−λ1 ,

where we recognized
∑∞

j=0
(λp)j

j! as the Taylor Series of eλp. �

(b) For n ∈ Z+, what is the distribution of Xn? State its name and specify its parameter(s). No justifica- 2pts
tion necessary.

Poisson[(1− p)nλ]. [If we denote by Rn ∼ Poisson(λ) the number of data blocks received n months
ago, then by the same reasoning as in part (a), a Poisson[(1 − p)λ] number of blocks will remain
uncorrupted after the first month. Then, each of this Poisson number of blocks gets corrupted with
probability p in the subsequent one month, and so we are left with a Poisson[(1 − p)(1 − p)λ] =
Poisson[(1−p)2λ] number of uncorrupted blocks after two months. Repeating this reasoning n times,
we find Xn ∼ Poisson[(1− p)nλ].

(c) What is the distribution of X0 + X1 + · · · + Xn? State its name and specify its parameter(s). No 2pts
justification necessary.

Poisson
[∑n

k=0(1− p)kλ
]

or Poisson
[

λ
p

(
1− (1− p)n+1

)]
. [Since X0, . . . , Xn are mutually in-

dependent Poisson random variables, part (b) tells us that X0 + · · · + Xn ∼ Poisson(µ), where
µ =

∑n
k=0(1− p)kλ = λ

p

[
1− (1− p)n+1

]
.]

[Q7 continued on next page]
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(d) lim
λ→∞

P
[
X0 − λ <

√
λ

]
= Φ(1) .

[Your answer may be left as an unevaluated sum or integral.] Justify your answer below. 3pts

For λ ∈ Z+, we can write X0 = Y1+· · ·+Yλ for Yk
i.i.d.∼ Poisson(1), and since E(Yk) = Var(Yk) = 1,

the Central Limit Theorem informs us that

P[X0 − λ <
√

λ] = P

[∑λ
k=1 Yk − λ√

λ
< 1

]
→ Φ(1) =

∫ 1

−∞

1√
2π

e−x2/2 dx

as λ →∞.
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8. I.I.D. Continuous Uniform Random Variables [All parts to be justified. Total of 13 points.]

For n ≥ 2, let X1, . . . , Xn be independent Uniform[0, 1] random variables, and, for i ∈ {1, . . . , n}, let
Yi denote the ith smallest value of {X1, . . . , Xn}. For example, Y1 = min{X1, . . . , Xn}, while Yn =
max{X1, . . . , Xn}. In HW 12, you found the distributions of Y1 and Yn.

(a) Prove that the probability density function (p.d.f.) of Y2 is given by fY2(y) = n(n − 1)y(1 − y)n−2, 4pts
where 0 ≤ y ≤ 1. [Hint: First derive the cumulative distribution function of Y2.]

To compute the p.d.f. of Y2, we can first compute its c.d.f. and differentiate:

P[Y2 ≤ y] = 1− P[Y2 > y],

P[Y2 > y] =
( n∑

i=1

P[Xi ≤ y and Xj > y for all j 6= i]
)

+ P[Xi > y for all i]

=
( n∑

i=1

y(1− y)n−1

)
+ (1− y)n = ny(1− y)n−1 + (1− y)n.

We get the second line by accounting for two disjoint cases that get us Y2 > y. Either (1) the smallest
Xi is less than or equal to y and the rest of the Xi are greater than y, or (2) all Xi are all greater than
y. Case (1) has n subcases, as there are n ways to choose which Xi that is less than or equal y.

Now that we have the c.d.f. FY2(y) = 1 − ny(1 − y)n−1 − (1 − y)n, we can differentiate it with
respect to y to get the p.d.f.:

fY2(y) =
d

dy

[
1− ny(1− y)n−1 − (1− y)n

]
= ny · (n− 1)(1− y)n−2 − n(1− y)n−1 + n(1− y)n−1

= n(n− 1)y(1− y)n−2, as desired.

(b) For the case of n = 2, find the joint p.d.f. f(y1, y2) of Y1 and Y2. Justify your answer. 3pts

First, because X1 and X2 must be in [0, 1], we only care about the domain 0 ≤ y1, y2 ≤ 1. We know
that the joint density f(y1, y2) is given as the limit of probabilities of (Y1, Y2) being in small rectangles
[y1, y1 + dy1]× [y2, y2 + dy2]:

f(y1, y2) = lim
dy1,dy2→0

P(y1 ≤ Y1 ≤ y1 + dy1, y2 ≤ Y2 ≤ y2 + dy2)/(dy1dy2).

This limit is 0 if y1 > y2 (as Y1 is necessarily smaller than Y2). If y1 ≤ y2, since (Y1, Y2) ∈
[y1, y1 + dy1] × [y2, y2 + dy2] if and only if either (X1, X2) ∈ [y1, y1 + dy1] × [y2, y2 + dy2] or
(X2, X1) ∈ [y1, y1 + dy1]× [y2, y2 + dy2], we have

P(y1 ≤ Y1 ≤ y1 + dy1, y2 ≤ Y2 ≤ y2 + dy2) = P(y1 ≤ X1 ≤ y1 + dy1, y2 ≤ X2 ≤ y2 + dy2)
+ P(y1 ≤ X2 ≤ y1 + dy1, y2 ≤ X1 ≤ y2 + dy2).

Furthermore, since X1 and X2 are independent Uniform[0, 1] random variables, we have
P(y1 ≤ X1 ≤ y1 + dy1, y2 ≤ X2 ≤ y2 + dy2) = P(y1 ≤ X2 ≤ y1 + dy1, y2 ≤ X1 ≤ y2 + dy2) ≈
dy1dy2. Hence,

f(y1, y2) =

{
2, if 0 ≤ y1 ≤ y2 ≤ 1,

0, otherwise.

[Q8 continued on next page]
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Alternative Solution: To compute the joint p.d.f. for 0 ≤ y1 ≤ y2 ≤ 1, we can compute the c.d.f. and
differentiate it with respect to y1 and y2:

P[Y1 ≤ y1 and Y2 ≤ y2] = P[X1 ≤ y1 and X2 ≤ y1]
+ P[X1 ≤ y1 and y1 < X2 ≤ y2] + P[X2 ≤ y1 and y1 < X1 ≤ y2]

= y2
1 + 2y1(y2 − y1).

f(y1, y2) =
d2

dy1dy2
[y2

1 + 2y1(y2 − y1)] = 2.

(c) Assume again n = 2 and let G = Y2−Y1, the gap size between Y1 and Y2. Find the p.d.f. of G. Justify 3pts
your answer.

We can rewrite G = Y2 − Y1 as G = |X2 −X1|. Then, the c.d.f. FG of G is

FG(g) = P[G ≤ g] = P[|X2 −X1| ≤ g] = 1− P[|X2 −X1| > g],

where P[|X2 − X1| > g] can be found as follows. Visualize (X1, X2) on the coordinate plane,
where the x-axis corresponds to X1 and the y-axis corresponds to X2, as shown in Figure ??. Then,
P[|X2 −X1| > g] can be found by summing the areas of the two red triangles, which is (1− g)2.

0 1g
0

1

g

X1

X
2

|X
2
-
X 1
| ≤

g

Figure 1: Each red triangle has height and base (1− g), so the total area of red regions is (1− g)2.

Now, the p.d.f. of G can be obtained by differentiating the c.d.f. FG with respect to g:

fG(g) =
d

dg

[
1− (1− g)2

]
= 2(1− g)

for g ∈ [0, 1], and fG(g) = 0 for g /∈ [0, 1].

[Q8 continued on next page]
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Alternative Solution 1: If you prefer to use calculus, P[|X2 −X1| > g] can also be found as

P[|X2 −X1| > g] = P[X2 −X1 > g] + P[X1 −X2 > g]
= 2 · P[X2 −X1 > g] (by symmetry)

= 2 ·
∫ (1−g)

0
P[X2 −X1 > g|X1 = x1] · fX1(x1)dx1

= 2 ·
∫ (1−g)

0
P[X2 > g + x1] · 1 · dx1

= 2 ·
∫ (1−g)

0
(1− g − x1)dx1

= 2 ·
[
x1(1− g)− x2

1

2

]∣∣∣∣(1−g)

0

= 2 ·
[
(1− g)2 − (1− g)2

2

]
= (1− g)2.

Alternative Solution 2: We can compute the p.d.f. of G using the joint p.d.f. of (Y1, Y2) as

fG(g) =
∫ 1−g

0
f(y, y + g)dy = 2(1− g),

for g ∈ [0, 1], and fG(g) = 0 for g /∈ [0, 1].

(d) What is P[G > 1
2 ]? Justify your answer. [Hint: You should be able to solve this problem without using 3pts

the p.d.f. of G.]

Using P[G > g] = P[|X2 −X1| > g] = (1− g)2 found above, we get:

P
[
G >

1
2

]
=

(
1− 1

2

)2

=
1
4
.

[End of Exam]
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